{"title":"通过识别和提取笔记本结构来提升Jupyter笔记本维护工具","authors":"Yuan Jiang, Christian Kästner, Shurui Zhou","doi":"10.1109/ICSME55016.2022.00047","DOIUrl":null,"url":null,"abstract":"Data analysis is an exploratory, interactive, and often collaborative process. Computational notebooks have become a popular tool to support this process, among others because of their ability to interleave code, narrative text, and results. However, notebooks in practice are often criticized as hard to maintain and being of low code quality, including problems such as unused or duplicated code and out-of-order code execution. Data scientists can benefit from better tool support when maintaining and evolving notebooks. We argue that central to such tool support is identifying the structure of notebooks. We present a lightweight and accurate approach to extract notebook structure and outline several ways such structure can be used to improve maintenance tooling for notebooks, including navigation and finding alternatives.","PeriodicalId":300084,"journal":{"name":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevating Jupyter Notebook Maintenance Tooling by Identifying and Extracting Notebook Structures\",\"authors\":\"Yuan Jiang, Christian Kästner, Shurui Zhou\",\"doi\":\"10.1109/ICSME55016.2022.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysis is an exploratory, interactive, and often collaborative process. Computational notebooks have become a popular tool to support this process, among others because of their ability to interleave code, narrative text, and results. However, notebooks in practice are often criticized as hard to maintain and being of low code quality, including problems such as unused or duplicated code and out-of-order code execution. Data scientists can benefit from better tool support when maintaining and evolving notebooks. We argue that central to such tool support is identifying the structure of notebooks. We present a lightweight and accurate approach to extract notebook structure and outline several ways such structure can be used to improve maintenance tooling for notebooks, including navigation and finding alternatives.\",\"PeriodicalId\":300084,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME55016.2022.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME55016.2022.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elevating Jupyter Notebook Maintenance Tooling by Identifying and Extracting Notebook Structures
Data analysis is an exploratory, interactive, and often collaborative process. Computational notebooks have become a popular tool to support this process, among others because of their ability to interleave code, narrative text, and results. However, notebooks in practice are often criticized as hard to maintain and being of low code quality, including problems such as unused or duplicated code and out-of-order code execution. Data scientists can benefit from better tool support when maintaining and evolving notebooks. We argue that central to such tool support is identifying the structure of notebooks. We present a lightweight and accurate approach to extract notebook structure and outline several ways such structure can be used to improve maintenance tooling for notebooks, including navigation and finding alternatives.