基于遗传算法的风电渗透互联电力系统鲁棒稳定性增强控制

C. Rao, M. Sankaraiah, P.Siva Prasad
{"title":"基于遗传算法的风电渗透互联电力系统鲁棒稳定性增强控制","authors":"C. Rao, M. Sankaraiah, P.Siva Prasad","doi":"10.1109/ICEEICT53079.2022.9768605","DOIUrl":null,"url":null,"abstract":"This work presents genetic algorithm-based power system stabilizers for conventional generators and genetic algorithm-based PI controllers for double fed induction generators (DFIGs) for enhancing dynamic stability of inter connected power system. This methodology is to inspect the vigorous dependability examination of various power frameworks, for example, wind power penetrations and fault conditions. The approach enjoys a few benefits compared with our past work. In the this method the parameters of DFIG controllers and power system stabilizers are tuned using genetic algorithm by maximizing fitness function, this function is formulated as a reciprocal of integral time area error (ITAE) of speed deviations of generators. In this paper the controller is examined on a classical “4 generator 11-bus” assessed energy framework, performance is compared with new set approach (Km theory). Results demonstrated that the controller is effectively damping the oscillations compared with new set approach.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Algorithm based controllers for Robust Stability Enhancement of interconnected Power System with wind power penetration\",\"authors\":\"C. Rao, M. Sankaraiah, P.Siva Prasad\",\"doi\":\"10.1109/ICEEICT53079.2022.9768605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents genetic algorithm-based power system stabilizers for conventional generators and genetic algorithm-based PI controllers for double fed induction generators (DFIGs) for enhancing dynamic stability of inter connected power system. This methodology is to inspect the vigorous dependability examination of various power frameworks, for example, wind power penetrations and fault conditions. The approach enjoys a few benefits compared with our past work. In the this method the parameters of DFIG controllers and power system stabilizers are tuned using genetic algorithm by maximizing fitness function, this function is formulated as a reciprocal of integral time area error (ITAE) of speed deviations of generators. In this paper the controller is examined on a classical “4 generator 11-bus” assessed energy framework, performance is compared with new set approach (Km theory). Results demonstrated that the controller is effectively damping the oscillations compared with new set approach.\",\"PeriodicalId\":201910,\"journal\":{\"name\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT53079.2022.9768605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于遗传算法的电力系统稳定器和基于遗传算法的双馈感应发电机(DFIGs) PI控制器,以提高互联电力系统的动态稳定性。该方法是对各种电力框架进行严格的可靠性检查,例如,风电穿透和故障条件。与我们过去的工作相比,这种方法有一些好处。该方法采用遗传算法对DFIG控制器参数和电力系统稳定器参数进行优化,优化后的适应度函数可表示为发电机转速偏差积分时域误差(ITAE)的倒数。本文在经典的“4发电机11总线”能量评估框架上对控制器进行了测试,并与新的集合方法(Km理论)进行了性能比较。结果表明,与新方法相比,该控制器能有效地抑制振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Algorithm based controllers for Robust Stability Enhancement of interconnected Power System with wind power penetration
This work presents genetic algorithm-based power system stabilizers for conventional generators and genetic algorithm-based PI controllers for double fed induction generators (DFIGs) for enhancing dynamic stability of inter connected power system. This methodology is to inspect the vigorous dependability examination of various power frameworks, for example, wind power penetrations and fault conditions. The approach enjoys a few benefits compared with our past work. In the this method the parameters of DFIG controllers and power system stabilizers are tuned using genetic algorithm by maximizing fitness function, this function is formulated as a reciprocal of integral time area error (ITAE) of speed deviations of generators. In this paper the controller is examined on a classical “4 generator 11-bus” assessed energy framework, performance is compared with new set approach (Km theory). Results demonstrated that the controller is effectively damping the oscillations compared with new set approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packet Transmission using Radio Access Protocol for Intra-Cluster Communications in Mobile Ad hoc Networks Performance of Combined RF and non-RF based Energy Harvesting scheme for Multi-Relay Cooperative Cognitive Radio Network Image Recognition, Classification and Analysis Using Convolutional Neural Networks An Optimized technique for a Sapid Motor pooling Tariff Forecasting System Pneumothorax Segmentation from Chest X-Rays Using U-Net/U-Net++ Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1