在运动过程中,肠道蛋白质水解提供必需的氨基酸。

Brandon Williams, R. Wolfe, D. Bracy, D. Wasserman
{"title":"在运动过程中,肠道蛋白质水解提供必需的氨基酸。","authors":"Brandon Williams, R. Wolfe, D. Bracy, D. Wasserman","doi":"10.1249/00005768-199205001-01063","DOIUrl":null,"url":null,"abstract":"Arteriovenous difference and tracer dilution techniques were utilized to determine the effect of exercise on whole body, gut, liver, and splanchnic leucine kinetics. Five postabsorptive dogs were infused with [1-13C]leucine and studied during rest, 90 min of moderate-intensity treadmill exercise (1st 45 min, early; last 45 min, late exercise), and 90 min of recovery. The whole body leucine rate of appearance (Rai; mumol.min 1.kg-1) increased from rest (3.33 +/- 0.11) during early (3.68 +/- 0.14) and late (4.24 +/- 0.27, P < 0.05) exercise and was 3.41 +/- 0.19 during recovery. Gut Ra increased from rest (0.64 +/- 0.08) during early (0.92 +/- 0.12) and late (1.30 +/- 0.20, P < 0.05) exercise and was 0.77 +/- 0.16 during recovery. Liver leucine Ra did not significantly change (P > 0.05). The whole body leucine rate of disappearance (Rd) paralleled whole body leucine Ra throughout. Leucine Rd across the gut, liver, and splanchnic bed, however, did not significantly change (P > 0.05), indicating an increase in leucine uptake outside of these regions. Because active skeletal muscle is likely the principal consumer of these amino acids, the data suggest that gut protein-derived amino acids are utilized for the attenuation of net muscle protein catabolism during and immediately following exercise.","PeriodicalId":125752,"journal":{"name":"The American journal of physiology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Gut proteolysis contributes essential amino acids during exercise.\",\"authors\":\"Brandon Williams, R. Wolfe, D. Bracy, D. Wasserman\",\"doi\":\"10.1249/00005768-199205001-01063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arteriovenous difference and tracer dilution techniques were utilized to determine the effect of exercise on whole body, gut, liver, and splanchnic leucine kinetics. Five postabsorptive dogs were infused with [1-13C]leucine and studied during rest, 90 min of moderate-intensity treadmill exercise (1st 45 min, early; last 45 min, late exercise), and 90 min of recovery. The whole body leucine rate of appearance (Rai; mumol.min 1.kg-1) increased from rest (3.33 +/- 0.11) during early (3.68 +/- 0.14) and late (4.24 +/- 0.27, P < 0.05) exercise and was 3.41 +/- 0.19 during recovery. Gut Ra increased from rest (0.64 +/- 0.08) during early (0.92 +/- 0.12) and late (1.30 +/- 0.20, P < 0.05) exercise and was 0.77 +/- 0.16 during recovery. Liver leucine Ra did not significantly change (P > 0.05). The whole body leucine rate of disappearance (Rd) paralleled whole body leucine Ra throughout. Leucine Rd across the gut, liver, and splanchnic bed, however, did not significantly change (P > 0.05), indicating an increase in leucine uptake outside of these regions. Because active skeletal muscle is likely the principal consumer of these amino acids, the data suggest that gut protein-derived amino acids are utilized for the attenuation of net muscle protein catabolism during and immediately following exercise.\",\"PeriodicalId\":125752,\"journal\":{\"name\":\"The American journal of physiology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1249/00005768-199205001-01063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1249/00005768-199205001-01063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

动静脉差异和示踪剂稀释技术被用来确定运动对全身、肠道、肝脏和内脏亮氨酸动力学的影响。5只吸收后的狗注射[1-13C]亮氨酸,在休息、90分钟的中等强度跑步机运动(前45分钟,早;最后45分钟(后期运动),90分钟恢复。全身亮氨酸外观率(Rai;mumol。运动前期(3.68 +/- 0.14)和后期(4.24 +/- 0.27,P < 0.05)较休息时(3.33 +/- 0.11)增加,恢复时(3.41 +/- 0.19)增加。运动前期(0.92 +/- 0.12)和运动后期(1.30 +/- 0.20,P < 0.05)肠道Ra较休息时升高(0.64 +/- 0.08),恢复时为0.77 +/- 0.16。肝亮氨酸Ra无显著变化(P < 0.05)。全身亮氨酸消失率(Rd)与全身亮氨酸Ra平行。然而,肠道、肝脏和内脏床的亮氨酸含量没有显著变化(P < 0.05),表明亮氨酸在这些区域外的摄取增加。因为活跃的骨骼肌可能是这些氨基酸的主要消耗者,数据表明肠道蛋白质衍生的氨基酸被用于在运动期间和运动后的净肌肉蛋白质分解代谢的衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gut proteolysis contributes essential amino acids during exercise.
Arteriovenous difference and tracer dilution techniques were utilized to determine the effect of exercise on whole body, gut, liver, and splanchnic leucine kinetics. Five postabsorptive dogs were infused with [1-13C]leucine and studied during rest, 90 min of moderate-intensity treadmill exercise (1st 45 min, early; last 45 min, late exercise), and 90 min of recovery. The whole body leucine rate of appearance (Rai; mumol.min 1.kg-1) increased from rest (3.33 +/- 0.11) during early (3.68 +/- 0.14) and late (4.24 +/- 0.27, P < 0.05) exercise and was 3.41 +/- 0.19 during recovery. Gut Ra increased from rest (0.64 +/- 0.08) during early (0.92 +/- 0.12) and late (1.30 +/- 0.20, P < 0.05) exercise and was 0.77 +/- 0.16 during recovery. Liver leucine Ra did not significantly change (P > 0.05). The whole body leucine rate of disappearance (Rd) paralleled whole body leucine Ra throughout. Leucine Rd across the gut, liver, and splanchnic bed, however, did not significantly change (P > 0.05), indicating an increase in leucine uptake outside of these regions. Because active skeletal muscle is likely the principal consumer of these amino acids, the data suggest that gut protein-derived amino acids are utilized for the attenuation of net muscle protein catabolism during and immediately following exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Now what? Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Hepatocytes in the bile duct-ligated rat express Bcl-2. Synergistic vascular effects of dietary sodium supplementation and angiotensin II administration. Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by inhibiting leukocyte activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1