Weizhi Nie, Anan Liu, Jing Yu, Yuting Su, L. Chaisorn, Yongkang Wang, M. Kankanhalli
{"title":"基于跨域学习的多视图动作识别","authors":"Weizhi Nie, Anan Liu, Jing Yu, Yuting Su, L. Chaisorn, Yongkang Wang, M. Kankanhalli","doi":"10.1109/MMSP.2014.6958811","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel multi-view human action recognition method by discovering and sharing common knowledge among different video sets captured in multiple viewpoints. To our knowledge, we are the first to treat a specific view as target domain and the others as source domains and consequently formulate the multi-view action recognition into the cross-domain learning framework. First, the classic bag-of-visual word framework is implemented for visual feature extraction in individual viewpoints. Then, we propose a cross-domain learning method with block-wise weighted kernel function matrix to highlight the saliency components and consequently augment the discriminative ability of the model. Extensive experiments are implemented on IXMAS, the popular multi-view action dataset. The experimental results demonstrate that the proposed method can consistently outperform the state of the arts.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-view action recognition by cross-domain learning\",\"authors\":\"Weizhi Nie, Anan Liu, Jing Yu, Yuting Su, L. Chaisorn, Yongkang Wang, M. Kankanhalli\",\"doi\":\"10.1109/MMSP.2014.6958811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel multi-view human action recognition method by discovering and sharing common knowledge among different video sets captured in multiple viewpoints. To our knowledge, we are the first to treat a specific view as target domain and the others as source domains and consequently formulate the multi-view action recognition into the cross-domain learning framework. First, the classic bag-of-visual word framework is implemented for visual feature extraction in individual viewpoints. Then, we propose a cross-domain learning method with block-wise weighted kernel function matrix to highlight the saliency components and consequently augment the discriminative ability of the model. Extensive experiments are implemented on IXMAS, the popular multi-view action dataset. The experimental results demonstrate that the proposed method can consistently outperform the state of the arts.\",\"PeriodicalId\":164858,\"journal\":{\"name\":\"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2014.6958811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-view action recognition by cross-domain learning
This paper proposes a novel multi-view human action recognition method by discovering and sharing common knowledge among different video sets captured in multiple viewpoints. To our knowledge, we are the first to treat a specific view as target domain and the others as source domains and consequently formulate the multi-view action recognition into the cross-domain learning framework. First, the classic bag-of-visual word framework is implemented for visual feature extraction in individual viewpoints. Then, we propose a cross-domain learning method with block-wise weighted kernel function matrix to highlight the saliency components and consequently augment the discriminative ability of the model. Extensive experiments are implemented on IXMAS, the popular multi-view action dataset. The experimental results demonstrate that the proposed method can consistently outperform the state of the arts.