E. Nikolaivits, Phaedra Dimopoulou, Veselin Maslak, J. Nikodinović-Runić, E. Topakas
{"title":"一种降解合成塑料的新型聚酯酶的发现及生化表征","authors":"E. Nikolaivits, Phaedra Dimopoulou, Veselin Maslak, J. Nikodinović-Runić, E. Topakas","doi":"10.3390/eccs2020-07572","DOIUrl":null,"url":null,"abstract":"Plastic waste poses an enormous environmental problem as a result of soil and ocean contamination, causing the release of microplastics that end up in humans through the food web. Enzymatic degradation of plastics has emerged as an alternative to traditional recycling processes. In the present work, we used bioinfomatics tools to discover a gene coding for a putative polyester degrading enzyme (polyesterase). The gene was heterologously expressed, purified and biochemically characterized. Furthermore, its ability to degrade polyethylene terephthalate (PET) model substrates and synthetic plastics was assessed.","PeriodicalId":151361,"journal":{"name":"Proceedings of 1st International Electronic Conference on Catalysis Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discovery and Biochemical Characterization of a Novel Polyesterase for the Degradation of Synthetic Plastics\",\"authors\":\"E. Nikolaivits, Phaedra Dimopoulou, Veselin Maslak, J. Nikodinović-Runić, E. Topakas\",\"doi\":\"10.3390/eccs2020-07572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic waste poses an enormous environmental problem as a result of soil and ocean contamination, causing the release of microplastics that end up in humans through the food web. Enzymatic degradation of plastics has emerged as an alternative to traditional recycling processes. In the present work, we used bioinfomatics tools to discover a gene coding for a putative polyester degrading enzyme (polyesterase). The gene was heterologously expressed, purified and biochemically characterized. Furthermore, its ability to degrade polyethylene terephthalate (PET) model substrates and synthetic plastics was assessed.\",\"PeriodicalId\":151361,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference on Catalysis Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference on Catalysis Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eccs2020-07572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference on Catalysis Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eccs2020-07572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery and Biochemical Characterization of a Novel Polyesterase for the Degradation of Synthetic Plastics
Plastic waste poses an enormous environmental problem as a result of soil and ocean contamination, causing the release of microplastics that end up in humans through the food web. Enzymatic degradation of plastics has emerged as an alternative to traditional recycling processes. In the present work, we used bioinfomatics tools to discover a gene coding for a putative polyester degrading enzyme (polyesterase). The gene was heterologously expressed, purified and biochemically characterized. Furthermore, its ability to degrade polyethylene terephthalate (PET) model substrates and synthetic plastics was assessed.