{"title":"用协方差拟合方法进行脑源定位","authors":"Anchal Yadav, P. Babu, Monika Agrwal, S. Joshi","doi":"10.1109/NCC52529.2021.9530045","DOIUrl":null,"url":null,"abstract":"The techniques like fMRI, CT scans, etc are used to localize the activity in the brain. Though these techniques have a high spatial resolution they are very expensive and uncomfortable for the patients. On the other hand, EEG signals can be obtained quite comfortably but suffer from low spatial resolution. A lot of research is being done to effectively extract spatial information from EEG signals. Many inverse techniques like MNE, LORETA, sLORETA, etc are available. All these methods can detect only a few sources and their performance degrades at low SNR. In this paper, covariance-based methods are used to estimate the location of brain activity from EEG signals such as SPICE (sparse iterative covariance-based estimation), and LIKES (likelihood-based estimation of sparse parameters). Intense simulation work has been presented to show that the proposed methods outperform the state-of-the-art methods.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brain Source Localization with covariance fitting approaches\",\"authors\":\"Anchal Yadav, P. Babu, Monika Agrwal, S. Joshi\",\"doi\":\"10.1109/NCC52529.2021.9530045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The techniques like fMRI, CT scans, etc are used to localize the activity in the brain. Though these techniques have a high spatial resolution they are very expensive and uncomfortable for the patients. On the other hand, EEG signals can be obtained quite comfortably but suffer from low spatial resolution. A lot of research is being done to effectively extract spatial information from EEG signals. Many inverse techniques like MNE, LORETA, sLORETA, etc are available. All these methods can detect only a few sources and their performance degrades at low SNR. In this paper, covariance-based methods are used to estimate the location of brain activity from EEG signals such as SPICE (sparse iterative covariance-based estimation), and LIKES (likelihood-based estimation of sparse parameters). Intense simulation work has been presented to show that the proposed methods outperform the state-of-the-art methods.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain Source Localization with covariance fitting approaches
The techniques like fMRI, CT scans, etc are used to localize the activity in the brain. Though these techniques have a high spatial resolution they are very expensive and uncomfortable for the patients. On the other hand, EEG signals can be obtained quite comfortably but suffer from low spatial resolution. A lot of research is being done to effectively extract spatial information from EEG signals. Many inverse techniques like MNE, LORETA, sLORETA, etc are available. All these methods can detect only a few sources and their performance degrades at low SNR. In this paper, covariance-based methods are used to estimate the location of brain activity from EEG signals such as SPICE (sparse iterative covariance-based estimation), and LIKES (likelihood-based estimation of sparse parameters). Intense simulation work has been presented to show that the proposed methods outperform the state-of-the-art methods.