植物物种识别的混合迁移学习模型

K. T, S. S, Rakshith Vuppala
{"title":"植物物种识别的混合迁移学习模型","authors":"K. T, S. S, Rakshith Vuppala","doi":"10.1109/ICITIIT54346.2022.9744222","DOIUrl":null,"url":null,"abstract":"Plants are an important part of everyone’s life on this planet. Today there are many species of plant are present on earth, classifying them has become a challenge because some plants look similar but are not same and there are many species of plant on earth to remember. Identifying the plant is easy for those who study about plants but for a common human, it is difficult. Thus, this research paper proposes a deep learning model to classify the plant leaf which has the capability to automatically extract features from images. The input is given to two architectures Xception and ResNet50v2 and the features extracted from these architectures are concatenated and given to fully connected network also known as transfer learning. The concatenated network gives comprehensive understanding about the dataset which would help it to perform well. The concatenated model shows an accuracy of 96.38% training accuracy and 89.36% validation accuracy on One-hundred plant species dataset and 95% training accuracy and 91.6% validation accuracy on Leafsnap dataset. The results of proposed model are compared with Xception model and ResNet50v2 model.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid transfer learning model for identification of plant species\",\"authors\":\"K. T, S. S, Rakshith Vuppala\",\"doi\":\"10.1109/ICITIIT54346.2022.9744222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants are an important part of everyone’s life on this planet. Today there are many species of plant are present on earth, classifying them has become a challenge because some plants look similar but are not same and there are many species of plant on earth to remember. Identifying the plant is easy for those who study about plants but for a common human, it is difficult. Thus, this research paper proposes a deep learning model to classify the plant leaf which has the capability to automatically extract features from images. The input is given to two architectures Xception and ResNet50v2 and the features extracted from these architectures are concatenated and given to fully connected network also known as transfer learning. The concatenated network gives comprehensive understanding about the dataset which would help it to perform well. The concatenated model shows an accuracy of 96.38% training accuracy and 89.36% validation accuracy on One-hundred plant species dataset and 95% training accuracy and 91.6% validation accuracy on Leafsnap dataset. The results of proposed model are compared with Xception model and ResNet50v2 model.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

植物是地球上每个人生活的重要组成部分。今天,地球上有许多种类的植物,对它们进行分类已经成为一项挑战,因为有些植物看起来很相似,但并不相同,而且地球上有许多种类的植物需要记住。对研究植物的人来说,识别这种植物很容易,但对普通人来说,就很难了。因此,本文提出了一种具有自动提取图像特征能力的植物叶片深度学习分类模型。输入给两个架构Xception和ResNet50v2,从这些架构中提取的特征被连接并给予完全连接的网络,也称为迁移学习。连接的网络提供了对数据集的全面理解,这将有助于它更好地执行。该模型在100种植物数据集上的训练准确率为96.38%,验证准确率为89.36%;在Leafsnap数据集上的训练准确率为95%,验证准确率为91.6%。将该模型与Xception模型和ResNet50v2模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid transfer learning model for identification of plant species
Plants are an important part of everyone’s life on this planet. Today there are many species of plant are present on earth, classifying them has become a challenge because some plants look similar but are not same and there are many species of plant on earth to remember. Identifying the plant is easy for those who study about plants but for a common human, it is difficult. Thus, this research paper proposes a deep learning model to classify the plant leaf which has the capability to automatically extract features from images. The input is given to two architectures Xception and ResNet50v2 and the features extracted from these architectures are concatenated and given to fully connected network also known as transfer learning. The concatenated network gives comprehensive understanding about the dataset which would help it to perform well. The concatenated model shows an accuracy of 96.38% training accuracy and 89.36% validation accuracy on One-hundred plant species dataset and 95% training accuracy and 91.6% validation accuracy on Leafsnap dataset. The results of proposed model are compared with Xception model and ResNet50v2 model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1