基于深度学习的医疗物联网网络入侵检测系统

Vinayakumar Ravi, T. Pham, M. Alazab
{"title":"基于深度学习的医疗物联网网络入侵检测系统","authors":"Vinayakumar Ravi, T. Pham, M. Alazab","doi":"10.1109/IOTM.001.2300021","DOIUrl":null,"url":null,"abstract":"This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things\",\"authors\":\"Vinayakumar Ravi, T. Pham, M. Alazab\",\"doi\":\"10.1109/IOTM.001.2300021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2300021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于深度学习的方法,用于医疗物联网(IoMT)系统中基于网络的入侵检测,该方法使用网络流和患者生物识别特征。该方法通过将网络流和患者生物特征信息传递到多个深度学习隐藏层,有效地学习最优特征表示。该网络包含一个全局关注层,有助于有效地从深度学习的时空特征中提取最优特征。为了避免数据不平衡,在深度学习模型中集成了成本敏感学习方法。所提出的模型显示了10倍的交叉验证准确率,在网络特征上为95%,在患者生物特征上为89%,在组合特征上为99%。除了IoMT环境外,在其他基于网络的入侵数据集上进行了实验,证明了该模型的鲁棒性和泛化能力。所提出的方法在所有测试用例中都优于现有方法,主要在IoMT入侵数据集上显示出3.9%的更高准确性。该模型可以用作IoMT网络监控工具,以保护IoMT设备和网络免受医疗保健和医疗环境中的攻击者的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things
This article presents a deep learning-based approach for network-based intrusion detection in the Internet of medical things (IoMT) systems using features of network flows and patient biometrics. The proposed approach effectively learns optimal feature representation by passing the information of network flows and patient biometrics into more than one hidden layer of deep learning. The network includes a global attention layer which helps to effectively extract the optimal features from the spatial and temporal features of deep learning. To avoid data imbalance, a cost-sensitive learning approach is integrated into the deep learning model. The proposed model showed a 10-fold cross-validation accuracy of 95 percent on network features, 89 percent on patient biometrics, and 99 percent on combined features. In addition to the IoMT environment, the robustness and generalization ability of the proposed model is shown by conducting experiments on other network-based intrusion datasets. The proposed approach outperformed the existing methods in all the test cases mainly showing a 3.9 percent higher accuracy on the IoMT intrusion dataset. The proposed model can be used as an IoMT network monitoring tool to safeguard the IoMT devices and networks from attackers inside the healthcare and medical environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Integrated Sensing and Communications for Massive MIMO LEO Satellite Systems AI for Critical Infrastructure Security: Concepts, Challenges, and Future Directions Mentor's Musings on Integrated Sensing & Communication - A Major Leap Towards an Ubiquitous IoT Paradigm IEEE Medala of Honor Cover 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1