{"title":"通过检测和容忍入侵来提高微服务系统的安全性","authors":"José Flora","doi":"10.1109/ISSREW51248.2020.00051","DOIUrl":null,"url":null,"abstract":"Microservice architectures adoption is growing expeditiously in market size and adoption, including in business-critical systems. This is due to agility in development and deployment further increased by containers and their characteristics. Ensuring security is still a major concern due to challenges faced such as resource separation and isolation, as improper access to one service might compromise complete systems. This doctoral work intends to advance the security of microservice systems through research and improvement of methodologies for detection, tolerance and mitigation of security intrusions, while overcoming challenges related to multi-tenancy, heterogeneity, dynamicity of systems and environments. Our preliminary research shows that host-based IDSes are applicable in container environments. This will be extended to dynamic scenarios, serving as a steppingstone to research intrusion tolerance techniques suited to these environments. These methodologies will be demonstrated in realistic microservice systems: complex, dynamic, scalable and elastic.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"106 s415","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions\",\"authors\":\"José Flora\",\"doi\":\"10.1109/ISSREW51248.2020.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microservice architectures adoption is growing expeditiously in market size and adoption, including in business-critical systems. This is due to agility in development and deployment further increased by containers and their characteristics. Ensuring security is still a major concern due to challenges faced such as resource separation and isolation, as improper access to one service might compromise complete systems. This doctoral work intends to advance the security of microservice systems through research and improvement of methodologies for detection, tolerance and mitigation of security intrusions, while overcoming challenges related to multi-tenancy, heterogeneity, dynamicity of systems and environments. Our preliminary research shows that host-based IDSes are applicable in container environments. This will be extended to dynamic scenarios, serving as a steppingstone to research intrusion tolerance techniques suited to these environments. These methodologies will be demonstrated in realistic microservice systems: complex, dynamic, scalable and elastic.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"106 s415\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions
Microservice architectures adoption is growing expeditiously in market size and adoption, including in business-critical systems. This is due to agility in development and deployment further increased by containers and their characteristics. Ensuring security is still a major concern due to challenges faced such as resource separation and isolation, as improper access to one service might compromise complete systems. This doctoral work intends to advance the security of microservice systems through research and improvement of methodologies for detection, tolerance and mitigation of security intrusions, while overcoming challenges related to multi-tenancy, heterogeneity, dynamicity of systems and environments. Our preliminary research shows that host-based IDSes are applicable in container environments. This will be extended to dynamic scenarios, serving as a steppingstone to research intrusion tolerance techniques suited to these environments. These methodologies will be demonstrated in realistic microservice systems: complex, dynamic, scalable and elastic.