预测不同时间范围内的规模溢价

Valeriy Zakamulin
{"title":"预测不同时间范围内的规模溢价","authors":"Valeriy Zakamulin","doi":"10.2139/ssrn.1951931","DOIUrl":null,"url":null,"abstract":"In this paper, we provide evidence that the small stock premium is predictable both in-sample and out-of-sample through the use of a set of lagged macroeconomic variables. We find that it is possible to forecast the size premium over time horizons that range from one month to one year. We demonstrate that the predictability of the size premium allows a portfolio manager to generate an economically and statistically significant active alpha.","PeriodicalId":178382,"journal":{"name":"ERN: Portfolio Optimization (Topic)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Forecasting the Size Premium Over Different Time Horizons\",\"authors\":\"Valeriy Zakamulin\",\"doi\":\"10.2139/ssrn.1951931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide evidence that the small stock premium is predictable both in-sample and out-of-sample through the use of a set of lagged macroeconomic variables. We find that it is possible to forecast the size premium over time horizons that range from one month to one year. We demonstrate that the predictability of the size premium allows a portfolio manager to generate an economically and statistically significant active alpha.\",\"PeriodicalId\":178382,\"journal\":{\"name\":\"ERN: Portfolio Optimization (Topic)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Portfolio Optimization (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1951931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Portfolio Optimization (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1951931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提供的证据表明,通过使用一组滞后的宏观经济变量,小股票溢价是可预测的样本内和样本外。我们发现,在一个月到一年的时间范围内预测规模溢价是可能的。我们证明了规模溢价的可预测性允许投资组合经理产生经济上和统计上显著的活跃alpha。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the Size Premium Over Different Time Horizons
In this paper, we provide evidence that the small stock premium is predictable both in-sample and out-of-sample through the use of a set of lagged macroeconomic variables. We find that it is possible to forecast the size premium over time horizons that range from one month to one year. We demonstrate that the predictability of the size premium allows a portfolio manager to generate an economically and statistically significant active alpha.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buy Low Sell High: A High Frequency Trading Perspective The Strategy Approval Decision: A Sharpe Ratio Indifference Curve Approach Risk Management and Portfolio Budgeting Based on ARMA-GARCH Non-Gaussian Multivariate Model Constant Proportion Portfolio Insurance Under Regime Switching Exponential L evy Process Ensemble Properties of High Frequency Data and Intraday Trading Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1