一种有效的基于pso的无线传感器网络节点定位方案

Po-Jen Chuang, Cheng-Pei Wu
{"title":"一种有效的基于pso的无线传感器网络节点定位方案","authors":"Po-Jen Chuang, Cheng-Pei Wu","doi":"10.1109/PDCAT.2008.73","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) usually employ different ranging techniques to measure the distance between an unknown node and its neighboring anchor nodes, and based on the measured distance to estimate the position of the unknown node. This paper presents an effective Particle Swarm Optimization (PSO)-based Localization Scheme using the Radio Signal Strength (RSS) ranging technique. Modified from the iterative multilateration algorithm, our scheme is unique in adopting the location data of remote anchors provided by the closest neighbor anchors of an unknown node to estimate the unknown nodepsilas position and using the PSO algorithm to further reduce error accumulation. The new scheme meanwhile takes in a modified DV-distance approach to raise the success ratios of locating unknown nodes. Compared with related schemes, our scheme is shown through simulations to perform constantly better in increasing localization success ratios and decreasing location errors -- at reduced cost.","PeriodicalId":282779,"journal":{"name":"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"An Effective PSO-Based Node Localization Scheme for Wireless Sensor Networks\",\"authors\":\"Po-Jen Chuang, Cheng-Pei Wu\",\"doi\":\"10.1109/PDCAT.2008.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSNs) usually employ different ranging techniques to measure the distance between an unknown node and its neighboring anchor nodes, and based on the measured distance to estimate the position of the unknown node. This paper presents an effective Particle Swarm Optimization (PSO)-based Localization Scheme using the Radio Signal Strength (RSS) ranging technique. Modified from the iterative multilateration algorithm, our scheme is unique in adopting the location data of remote anchors provided by the closest neighbor anchors of an unknown node to estimate the unknown nodepsilas position and using the PSO algorithm to further reduce error accumulation. The new scheme meanwhile takes in a modified DV-distance approach to raise the success ratios of locating unknown nodes. Compared with related schemes, our scheme is shown through simulations to perform constantly better in increasing localization success ratios and decreasing location errors -- at reduced cost.\",\"PeriodicalId\":282779,\"journal\":{\"name\":\"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2008.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2008.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

无线传感器网络通常采用不同的测距技术来测量未知节点与其相邻锚节点之间的距离,并根据测量到的距离来估计未知节点的位置。提出了一种有效的基于粒子群优化(PSO)的无线电信号强度(RSS)测距方案。该方案在迭代迭代算法的基础上进行了改进,其独特之处在于利用未知节点最近邻锚点提供的远程锚点位置数据来估计未知节点的沉降位置,并使用粒子群算法进一步减少误差积累。同时采用改进的dv距离方法,提高了未知节点的定位成功率。仿真结果表明,该方案在提高定位成功率和降低定位误差方面不断取得较好的效果,且成本较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective PSO-Based Node Localization Scheme for Wireless Sensor Networks
Wireless sensor networks (WSNs) usually employ different ranging techniques to measure the distance between an unknown node and its neighboring anchor nodes, and based on the measured distance to estimate the position of the unknown node. This paper presents an effective Particle Swarm Optimization (PSO)-based Localization Scheme using the Radio Signal Strength (RSS) ranging technique. Modified from the iterative multilateration algorithm, our scheme is unique in adopting the location data of remote anchors provided by the closest neighbor anchors of an unknown node to estimate the unknown nodepsilas position and using the PSO algorithm to further reduce error accumulation. The new scheme meanwhile takes in a modified DV-distance approach to raise the success ratios of locating unknown nodes. Compared with related schemes, our scheme is shown through simulations to perform constantly better in increasing localization success ratios and decreasing location errors -- at reduced cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Studies in Computer Network Measurement Advances in the ProGenGrid Workflow Management System Finding Interaction Partners Using Attitude-Based Decision Strategies Agent Migration and Communication in WSNs Portable Object Thermal Awareness: Modeling Intelligent Sensor Networks for Cool Store Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1