基于gpu的图像压缩在分布式渲染应用中的高效合成

Riley Lipinski, K. Moreland, M. Papka, T. Marrinan
{"title":"基于gpu的图像压缩在分布式渲染应用中的高效合成","authors":"Riley Lipinski, K. Moreland, M. Papka, T. Marrinan","doi":"10.1109/LDAV53230.2021.00012","DOIUrl":null,"url":null,"abstract":"Visualizations of large-scale data sets are often created on graphics clusters that distribute the rendering task amongst many processes. When using real-time GPU-based graphics algorithms, the most time-consuming aspect of distributed rendering is typically the com-positing phase - combining all partial images from each rendering process into the final visualization. Compo siting requires image data to be copied off the GPU and sent over a network to other processes. While compression has been utilized in existing distributed rendering compositors to reduce the data being sent over the network, this compression tends to occur after the raw images are transferred from the GPU to main memory. In this paper, we present work that leverages OpenGL / CUDA interoperability to compress raw images on the GPU prior to transferring the data to main memory. This approach can significantly reduce the device-to-host data transfer time, thus enabling more efficient compositing of images generated by distributed rendering applications.","PeriodicalId":441438,"journal":{"name":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GPU-based Image Compression for Efficient Compositing in Distributed Rendering Applications\",\"authors\":\"Riley Lipinski, K. Moreland, M. Papka, T. Marrinan\",\"doi\":\"10.1109/LDAV53230.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizations of large-scale data sets are often created on graphics clusters that distribute the rendering task amongst many processes. When using real-time GPU-based graphics algorithms, the most time-consuming aspect of distributed rendering is typically the com-positing phase - combining all partial images from each rendering process into the final visualization. Compo siting requires image data to be copied off the GPU and sent over a network to other processes. While compression has been utilized in existing distributed rendering compositors to reduce the data being sent over the network, this compression tends to occur after the raw images are transferred from the GPU to main memory. In this paper, we present work that leverages OpenGL / CUDA interoperability to compress raw images on the GPU prior to transferring the data to main memory. This approach can significantly reduce the device-to-host data transfer time, thus enabling more efficient compositing of images generated by distributed rendering applications.\",\"PeriodicalId\":441438,\"journal\":{\"name\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV53230.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV53230.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大规模数据集的可视化通常是在图形集群上创建的,图形集群将渲染任务分配给许多进程。当使用基于实时gpu的图形算法时,分布式渲染中最耗时的部分通常是合成阶段——将每个渲染过程中的所有局部图像组合到最终的可视化中。合成需要从GPU复制图像数据,并通过网络发送到其他进程。虽然在现有的分布式渲染合成器中已经使用压缩来减少通过网络发送的数据,但这种压缩往往发生在原始图像从GPU传输到主存储器之后。在本文中,我们展示了利用OpenGL / CUDA互操作性在将数据传输到主存储器之前压缩GPU上的原始图像的工作。这种方法可以显著减少设备到主机的数据传输时间,从而能够更有效地合成分布式呈现应用程序生成的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-based Image Compression for Efficient Compositing in Distributed Rendering Applications
Visualizations of large-scale data sets are often created on graphics clusters that distribute the rendering task amongst many processes. When using real-time GPU-based graphics algorithms, the most time-consuming aspect of distributed rendering is typically the com-positing phase - combining all partial images from each rendering process into the final visualization. Compo siting requires image data to be copied off the GPU and sent over a network to other processes. While compression has been utilized in existing distributed rendering compositors to reduce the data being sent over the network, this compression tends to occur after the raw images are transferred from the GPU to main memory. In this paper, we present work that leverages OpenGL / CUDA interoperability to compress raw images on the GPU prior to transferring the data to main memory. This approach can significantly reduce the device-to-host data transfer time, thus enabling more efficient compositing of images generated by distributed rendering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IExchange: Asynchronous Communication and Termination Detection for Iterative Algorithms Parameter Analysis and Contrail Detection of Aircraft Engine Simulations An Entropy-Based Approach for Identifying User-Preferred Camera Positions Portable and Composable Flow Graphs for In Situ Analytics Lossy Compression for Visualization of Atmospheric Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1