CAKE时钟和梯形时钟方案:原理和演示测试

Jinyuan Wu, Stephanie Wang, Kevin Zhang
{"title":"CAKE时钟和梯形时钟方案:原理和演示测试","authors":"Jinyuan Wu, Stephanie Wang, Kevin Zhang","doi":"10.1109/NSSMIC.2013.6829444","DOIUrl":null,"url":null,"abstract":"A novel clock distribution technique, the Cable Automatic sKew Elimination (CAKE) clocking scheme has been developed and presented in this paper. In this scheme, clock pulses are driven into a cable and reflected from the high impedance receiving end. At the driving end, a cake-shaped waveform is seen and with 1/4 of the full pulse amplitude threshold, the output logic pulse width from a comparator carries cable delay information. Using a time-to-digital converter (TDC), the cable delay variation due to temperature change can be monitored and compensated for. The philosophy behind the CAKE clocking scheme is to keep the receiving end as simple as possible while implement extra circuitry in the transmitting end. Another clocking technique based on the same philosophy is the trapezoidal clocking scheme that we developed in our previous work. Demo tests of both the CAKE clocking and the trapezoidal clocking schemes are presented in this paper.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CAKE clocking and the trapezoidal clocking schemes: Principles and demo tests\",\"authors\":\"Jinyuan Wu, Stephanie Wang, Kevin Zhang\",\"doi\":\"10.1109/NSSMIC.2013.6829444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel clock distribution technique, the Cable Automatic sKew Elimination (CAKE) clocking scheme has been developed and presented in this paper. In this scheme, clock pulses are driven into a cable and reflected from the high impedance receiving end. At the driving end, a cake-shaped waveform is seen and with 1/4 of the full pulse amplitude threshold, the output logic pulse width from a comparator carries cable delay information. Using a time-to-digital converter (TDC), the cable delay variation due to temperature change can be monitored and compensated for. The philosophy behind the CAKE clocking scheme is to keep the receiving end as simple as possible while implement extra circuitry in the transmitting end. Another clocking technique based on the same philosophy is the trapezoidal clocking scheme that we developed in our previous work. Demo tests of both the CAKE clocking and the trapezoidal clocking schemes are presented in this paper.\",\"PeriodicalId\":246351,\"journal\":{\"name\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的时钟分配技术——电缆自动消斜(CAKE)时钟方案。在该方案中,时钟脉冲被驱动到电缆中,并从高阻抗接收端反射。在驱动端,可以看到饼状波形,并且在满脉冲幅度阈值的1/4处,比较器输出的逻辑脉冲宽度携带电缆延迟信息。利用时间-数字转换器(TDC),可以监测和补偿由于温度变化引起的电缆延迟变化。CAKE时钟方案背后的理念是保持接收端尽可能简单,同时在发送端实现额外的电路。另一种基于相同原理的时钟技术是我们在之前的工作中开发的梯形时钟方案。本文给出了CAKE时钟方案和梯形时钟方案的演示测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The CAKE clocking and the trapezoidal clocking schemes: Principles and demo tests
A novel clock distribution technique, the Cable Automatic sKew Elimination (CAKE) clocking scheme has been developed and presented in this paper. In this scheme, clock pulses are driven into a cable and reflected from the high impedance receiving end. At the driving end, a cake-shaped waveform is seen and with 1/4 of the full pulse amplitude threshold, the output logic pulse width from a comparator carries cable delay information. Using a time-to-digital converter (TDC), the cable delay variation due to temperature change can be monitored and compensated for. The philosophy behind the CAKE clocking scheme is to keep the receiving end as simple as possible while implement extra circuitry in the transmitting end. Another clocking technique based on the same philosophy is the trapezoidal clocking scheme that we developed in our previous work. Demo tests of both the CAKE clocking and the trapezoidal clocking schemes are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Scientific Trigger Unit for space-based real-time gamma ray burst detection I - Scientific software model and simulations Study on two-cell rf-deflector cavity for ultra-short electron bunch measurement Applications of many-core technologies to on-line event reconstruction in High Energy Physics experiments Optimization of the gas system in the CMS RPC detector at the LHC Performance of the ATLAS calorimeter trigger in the LHC Run 1 data taking period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1