利用非刚性配准和精确的结节检测与分割,准确估计CT图像中肺结节的生长速度

Yuanjie Zheng, C. Kambhamettu, T. Bauer, K. Steiner
{"title":"利用非刚性配准和精确的结节检测与分割,准确估计CT图像中肺结节的生长速度","authors":"Yuanjie Zheng, C. Kambhamettu, T. Bauer, K. Steiner","doi":"10.1109/CVPRW.2009.5204050","DOIUrl":null,"url":null,"abstract":"We propose a new tumor growth measure for pulmonary nodules in CT images, which can account for the tumor deformation caused by the inspiration level's difference. It is accomplished with a new nonrigid lung registration process, which can handle the tumor expanding/shrinking problem occurring in many conventional nonrigid registration methods. The accurate nonrigid registration is performed by weighting the matching cost of each voxel, based on the result of a new nodule detection approach and a powerful nodule segmentation algorithm. Comprehensive experiments show the high accuracy of our algorithms and the promising results of our new tumor growth measure.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Accurate estimation of pulmonary nodule's growth rate in CT images with nonrigid registration and precise nodule detection and segmentation\",\"authors\":\"Yuanjie Zheng, C. Kambhamettu, T. Bauer, K. Steiner\",\"doi\":\"10.1109/CVPRW.2009.5204050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new tumor growth measure for pulmonary nodules in CT images, which can account for the tumor deformation caused by the inspiration level's difference. It is accomplished with a new nonrigid lung registration process, which can handle the tumor expanding/shrinking problem occurring in many conventional nonrigid registration methods. The accurate nonrigid registration is performed by weighting the matching cost of each voxel, based on the result of a new nodule detection approach and a powerful nodule segmentation algorithm. Comprehensive experiments show the high accuracy of our algorithms and the promising results of our new tumor growth measure.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种新的肺结节CT图像的肿瘤生长测量方法,该方法可以解释由于吸入水平的差异而引起的肿瘤变形。它通过一种新的非刚性肺配准过程来完成,可以解决许多传统非刚性配准方法中出现的肿瘤扩张/缩小问题。基于一种新的结节检测方法和强大的结节分割算法,通过加权每个体素的匹配代价来实现精确的非刚性配准。综合实验表明,我们的算法具有很高的准确性,并且我们的新肿瘤生长测量方法取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate estimation of pulmonary nodule's growth rate in CT images with nonrigid registration and precise nodule detection and segmentation
We propose a new tumor growth measure for pulmonary nodules in CT images, which can account for the tumor deformation caused by the inspiration level's difference. It is accomplished with a new nonrigid lung registration process, which can handle the tumor expanding/shrinking problem occurring in many conventional nonrigid registration methods. The accurate nonrigid registration is performed by weighting the matching cost of each voxel, based on the result of a new nodule detection approach and a powerful nodule segmentation algorithm. Comprehensive experiments show the high accuracy of our algorithms and the promising results of our new tumor growth measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1