优化正交变换像素块大小的鲁棒光学水印技术

Y. Ishikawa, K. Uehira, K. Yanaka
{"title":"优化正交变换像素块大小的鲁棒光学水印技术","authors":"Y. Ishikawa, K. Uehira, K. Yanaka","doi":"10.1109/IAS.2011.6074364","DOIUrl":null,"url":null,"abstract":"We previously proposed a novel technology with which the images of real objects with no copyright protection could contain invisible digital watermarking, using spatially modulated illumination. In this “optical watermarking” technology we used orthogonal transforms such as a Discrete Cosine Transform (DCT) or a Walsh-Hadamard Transform (WHT) to produce watermarking images, where 1-bit binary information was embedded into each pixel block. Here, we propose a new robust technique of optical watermarking that varies the size of pixel blocks by a trade-off in the efficiency of embedded watermarking. We conducted experiments where 4×4, 8x8, and 16×16 pixels were used in one block. A detection accuracy of 100% was obtained by using a block with 16×16 pixels when embedded watermarking was extremely weak, although the accuracy did not reach 100% by using blocks with 4×4 or 8×8 pixels under the same embedding conditions. The results from experiments revealed the effectiveness of our proposed technique.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust optical watermarking technique by optimizing the size of pixel blocks of orthogonal transform\",\"authors\":\"Y. Ishikawa, K. Uehira, K. Yanaka\",\"doi\":\"10.1109/IAS.2011.6074364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We previously proposed a novel technology with which the images of real objects with no copyright protection could contain invisible digital watermarking, using spatially modulated illumination. In this “optical watermarking” technology we used orthogonal transforms such as a Discrete Cosine Transform (DCT) or a Walsh-Hadamard Transform (WHT) to produce watermarking images, where 1-bit binary information was embedded into each pixel block. Here, we propose a new robust technique of optical watermarking that varies the size of pixel blocks by a trade-off in the efficiency of embedded watermarking. We conducted experiments where 4×4, 8x8, and 16×16 pixels were used in one block. A detection accuracy of 100% was obtained by using a block with 16×16 pixels when embedded watermarking was extremely weak, although the accuracy did not reach 100% by using blocks with 4×4 or 8×8 pixels under the same embedding conditions. The results from experiments revealed the effectiveness of our proposed technique.\",\"PeriodicalId\":268988,\"journal\":{\"name\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2011.6074364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们之前提出了一种新的技术,利用空间调制照明,使没有版权保护的真实物体的图像包含不可见的数字水印。在这种“光学水印”技术中,我们使用正交变换,如离散余弦变换(DCT)或沃尔什-阿达玛变换(WHT)来产生水印图像,其中1位二进制信息嵌入到每个像素块中。在这里,我们提出了一种新的鲁棒光学水印技术,该技术通过权衡嵌入水印的效率来改变像素块的大小。我们在一个块中使用4×4、8x8和16×16像素进行实验。在嵌入水印极弱的情况下,使用16×16像素块的检测精度可以达到100%,而在相同的嵌入条件下,使用4×4或8×8像素块的检测精度都不能达到100%。实验结果表明我们提出的技术是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust optical watermarking technique by optimizing the size of pixel blocks of orthogonal transform
We previously proposed a novel technology with which the images of real objects with no copyright protection could contain invisible digital watermarking, using spatially modulated illumination. In this “optical watermarking” technology we used orthogonal transforms such as a Discrete Cosine Transform (DCT) or a Walsh-Hadamard Transform (WHT) to produce watermarking images, where 1-bit binary information was embedded into each pixel block. Here, we propose a new robust technique of optical watermarking that varies the size of pixel blocks by a trade-off in the efficiency of embedded watermarking. We conducted experiments where 4×4, 8x8, and 16×16 pixels were used in one block. A detection accuracy of 100% was obtained by using a block with 16×16 pixels when embedded watermarking was extremely weak, although the accuracy did not reach 100% by using blocks with 4×4 or 8×8 pixels under the same embedding conditions. The results from experiments revealed the effectiveness of our proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-rates fuel cell emulation with spatial reduced real-time fuel cell modelling Distribution of electric potential at the surface of corona-charged non-woven fabrics A sensorless induction motor drive using a least mean square speed estimator and the matrix converter Connectivity of DC microgrids involving sustainable energy sources A microprocessor-based controller for high temperature PEM fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1