A. Kopliku, Firas Damak, K. Pinel-Sauvagnat, M. Boughanem
{"title":"聚合搜索的兴趣与评价","authors":"A. Kopliku, Firas Damak, K. Pinel-Sauvagnat, M. Boughanem","doi":"10.1109/WI-IAT.2011.99","DOIUrl":null,"url":null,"abstract":"Major search engines perform what is known as Aggregated Search (AS). They integrate results coming from different vertical search engines (images, videos, news, etc.) with typical Web search results. Aggregated search is relatively new and its advantages need to be evaluated. Some existing works have already tried to evaluate the interest (usefulness) of aggregated search as well as the effectiveness of the existing approaches. However, most of evaluation methodologies were based (i) on what we call relevance by intent (i.e. search results were not shown to real users), and (ii) short text queries. In this paper, we conducted a user study which was designed to revisit and compare the interest of aggregated search, by exploiting both relevance by intent and content, and using both short text and fixed need queries. This user study allowed us to analyze the distribution of relevant results across different verticals, and to show that AS helps to identify complementary relevant sources for the same information need. Comparison between relevance by intent and relevance by content showed that relevance by intent introduces a bias in evaluation. Discussion about the results also allowed us to identify some useful thoughts concerning the evaluation of AS approaches.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Interest and Evaluation of Aggregated Search\",\"authors\":\"A. Kopliku, Firas Damak, K. Pinel-Sauvagnat, M. Boughanem\",\"doi\":\"10.1109/WI-IAT.2011.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major search engines perform what is known as Aggregated Search (AS). They integrate results coming from different vertical search engines (images, videos, news, etc.) with typical Web search results. Aggregated search is relatively new and its advantages need to be evaluated. Some existing works have already tried to evaluate the interest (usefulness) of aggregated search as well as the effectiveness of the existing approaches. However, most of evaluation methodologies were based (i) on what we call relevance by intent (i.e. search results were not shown to real users), and (ii) short text queries. In this paper, we conducted a user study which was designed to revisit and compare the interest of aggregated search, by exploiting both relevance by intent and content, and using both short text and fixed need queries. This user study allowed us to analyze the distribution of relevant results across different verticals, and to show that AS helps to identify complementary relevant sources for the same information need. Comparison between relevance by intent and relevance by content showed that relevance by intent introduces a bias in evaluation. Discussion about the results also allowed us to identify some useful thoughts concerning the evaluation of AS approaches.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Major search engines perform what is known as Aggregated Search (AS). They integrate results coming from different vertical search engines (images, videos, news, etc.) with typical Web search results. Aggregated search is relatively new and its advantages need to be evaluated. Some existing works have already tried to evaluate the interest (usefulness) of aggregated search as well as the effectiveness of the existing approaches. However, most of evaluation methodologies were based (i) on what we call relevance by intent (i.e. search results were not shown to real users), and (ii) short text queries. In this paper, we conducted a user study which was designed to revisit and compare the interest of aggregated search, by exploiting both relevance by intent and content, and using both short text and fixed need queries. This user study allowed us to analyze the distribution of relevant results across different verticals, and to show that AS helps to identify complementary relevant sources for the same information need. Comparison between relevance by intent and relevance by content showed that relevance by intent introduces a bias in evaluation. Discussion about the results also allowed us to identify some useful thoughts concerning the evaluation of AS approaches.