论网络钓鱼的语义

H. Orman
{"title":"论网络钓鱼的语义","authors":"H. Orman","doi":"10.1109/SPW.2012.12","DOIUrl":null,"url":null,"abstract":"Phishing constitutes more than half of all reported security incident son the Internet. The attacks cause users to erroneously trust websites and enter sensitive data because the email notifications and the website look familiar. Our hypothesis is that familiarity can be defined formally using history data from the user's computer, and effective presentation of the data can help users distinguishphishing messages from trustworthy messages.","PeriodicalId":201519,"journal":{"name":"2012 IEEE Symposium on Security and Privacy Workshops","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards a Semantics of Phish\",\"authors\":\"H. Orman\",\"doi\":\"10.1109/SPW.2012.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phishing constitutes more than half of all reported security incident son the Internet. The attacks cause users to erroneously trust websites and enter sensitive data because the email notifications and the website look familiar. Our hypothesis is that familiarity can be defined formally using history data from the user's computer, and effective presentation of the data can help users distinguishphishing messages from trustworthy messages.\",\"PeriodicalId\":201519,\"journal\":{\"name\":\"2012 IEEE Symposium on Security and Privacy Workshops\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Symposium on Security and Privacy Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2012.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Symposium on Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

网络钓鱼构成了所有已报告的互联网安全事件的一半以上。这些攻击导致用户错误地信任网站并输入敏感数据,因为电子邮件通知和网站看起来很熟悉。我们的假设是,熟悉度可以使用来自用户计算机的历史数据来正式定义,数据的有效表示可以帮助用户区分消息和可信消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Semantics of Phish
Phishing constitutes more than half of all reported security incident son the Internet. The attacks cause users to erroneously trust websites and enter sensitive data because the email notifications and the website look familiar. Our hypothesis is that familiarity can be defined formally using history data from the user's computer, and effective presentation of the data can help users distinguishphishing messages from trustworthy messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insider Threats against Trust Mechanism with Watchdog and Defending Approaches in Wireless Sensor Networks Using Consensus Clustering for Multi-view Anomaly Detection Side-Channel Analysis of Grøstl and Skein Fog Computing: Mitigating Insider Data Theft Attacks in the Cloud Slender PUF Protocol: A Lightweight, Robust, and Secure Authentication by Substring Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1