复杂光照条件下自适应鲁棒手部运动识别

Zhongnan Qu
{"title":"复杂光照条件下自适应鲁棒手部运动识别","authors":"Zhongnan Qu","doi":"10.1109/ICAR.2017.8023666","DOIUrl":null,"url":null,"abstract":"This paper describes an adaptive robust moving hands recognition algorithm using Kinect V2, which can detect the bare hands or hands with gloves in the real-time image stream under complex lighting condition. Firstly, according to the Bayes criterion, a novel skin color classification is built on the best separation plane in color space, which is found through linear discriminant analysis (LDA). Secondly, an adaptive learning rate and connected component theory are added to the traditional background subtraction. Finally, this new background subtraction and LDA skin color classification are combined together with an adaptive updated skin color look-up-table. In experiment results, this algorithm presents a satisfactory performance in hand detection under complex lighting condition.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive robust moving hands recognition under complex lighting condition\",\"authors\":\"Zhongnan Qu\",\"doi\":\"10.1109/ICAR.2017.8023666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an adaptive robust moving hands recognition algorithm using Kinect V2, which can detect the bare hands or hands with gloves in the real-time image stream under complex lighting condition. Firstly, according to the Bayes criterion, a novel skin color classification is built on the best separation plane in color space, which is found through linear discriminant analysis (LDA). Secondly, an adaptive learning rate and connected component theory are added to the traditional background subtraction. Finally, this new background subtraction and LDA skin color classification are combined together with an adaptive updated skin color look-up-table. In experiment results, this algorithm presents a satisfactory performance in hand detection under complex lighting condition.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种基于Kinect V2的自适应鲁棒运动手部识别算法,该算法可以在复杂光照条件下实时图像流中检测到徒手或戴手套的手。首先,根据贝叶斯准则,通过线性判别分析(LDA)在颜色空间的最佳分离平面上建立新的肤色分类;其次,在传统的背景减法的基础上增加了自适应学习率和连通分量理论。最后,将这种新的背景减法和LDA肤色分类与自适应更新的肤色查表相结合。实验结果表明,该算法在复杂光照条件下具有较好的手部检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive robust moving hands recognition under complex lighting condition
This paper describes an adaptive robust moving hands recognition algorithm using Kinect V2, which can detect the bare hands or hands with gloves in the real-time image stream under complex lighting condition. Firstly, according to the Bayes criterion, a novel skin color classification is built on the best separation plane in color space, which is found through linear discriminant analysis (LDA). Secondly, an adaptive learning rate and connected component theory are added to the traditional background subtraction. Finally, this new background subtraction and LDA skin color classification are combined together with an adaptive updated skin color look-up-table. In experiment results, this algorithm presents a satisfactory performance in hand detection under complex lighting condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Questionnaire experiment using networked service robots Model selection for incremental learning of generalizable movement primitives Safety evaluation method of robot arm considering energy of contact Robotman: A security robot for human-robot interaction Physical edge detection in clothing items for robotic manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1