他人的生活:用非选择反应预测捐赠

Jeffrey Naecker
{"title":"他人的生活:用非选择反应预测捐赠","authors":"Jeffrey Naecker","doi":"10.2139/ssrn.2699551","DOIUrl":null,"url":null,"abstract":"There is significant variation in the percentage of adults registered as organ donors across the United States. Some of this variation may be due to characteristics of the sign-up process, in particular the form that is used when state residents renew or apply for their driver's licenses. However, it is difficult to model and predict the success of the different forms with typical methods, due to the exceptionally large feature space and the limited data. To surmount this problem, I apply a methodology that uses data on subjective non-choice reactions to predict choices. I find that active (ie yes-no) framing of the designation question decreases designation rates by 2-3 percentage points relative to an opt-in framing. Additionally, I show that this methodology can predict behavior in an experimental setting involving social motives where we have good structural benchmarks. More generally, this methodology can be used to perform policy pseudo-experiments where field experiments would prove prohibitively expensive or difficult.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Lives of Others: Predicting Donations with Non-Choice Responses\",\"authors\":\"Jeffrey Naecker\",\"doi\":\"10.2139/ssrn.2699551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is significant variation in the percentage of adults registered as organ donors across the United States. Some of this variation may be due to characteristics of the sign-up process, in particular the form that is used when state residents renew or apply for their driver's licenses. However, it is difficult to model and predict the success of the different forms with typical methods, due to the exceptionally large feature space and the limited data. To surmount this problem, I apply a methodology that uses data on subjective non-choice reactions to predict choices. I find that active (ie yes-no) framing of the designation question decreases designation rates by 2-3 percentage points relative to an opt-in framing. Additionally, I show that this methodology can predict behavior in an experimental setting involving social motives where we have good structural benchmarks. More generally, this methodology can be used to perform policy pseudo-experiments where field experiments would prove prohibitively expensive or difficult.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2699551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2699551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在美国各地,登记为器官捐献者的成年人的比例存在显著差异。这种差异的部分原因可能是由于注册过程的特点,特别是当州居民更新或申请驾驶执照时使用的表格。然而,由于特征空间特别大,数据有限,用典型的方法很难对不同形式的成功进行建模和预测。为了克服这个问题,我采用了一种方法,使用主观非选择反应的数据来预测选择。我发现,相对于选择性框架,主动(即是-否)的指定问题框架可以降低指定率2-3个百分点。此外,我还表明,这种方法可以在涉及社会动机的实验环境中预测行为,因为我们有良好的结构基准。更一般地说,这种方法可以用于执行政策伪实验,而实地实验将证明过于昂贵或困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Lives of Others: Predicting Donations with Non-Choice Responses
There is significant variation in the percentage of adults registered as organ donors across the United States. Some of this variation may be due to characteristics of the sign-up process, in particular the form that is used when state residents renew or apply for their driver's licenses. However, it is difficult to model and predict the success of the different forms with typical methods, due to the exceptionally large feature space and the limited data. To surmount this problem, I apply a methodology that uses data on subjective non-choice reactions to predict choices. I find that active (ie yes-no) framing of the designation question decreases designation rates by 2-3 percentage points relative to an opt-in framing. Additionally, I show that this methodology can predict behavior in an experimental setting involving social motives where we have good structural benchmarks. More generally, this methodology can be used to perform policy pseudo-experiments where field experiments would prove prohibitively expensive or difficult.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1