基于AHP/D-S证据理论的贝叶斯网络参数学习方法

Shuhuan Wei, Yanqiao Chen, Junbao Geng
{"title":"基于AHP/D-S证据理论的贝叶斯网络参数学习方法","authors":"Shuhuan Wei, Yanqiao Chen, Junbao Geng","doi":"10.1145/3424978.3425149","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of prior knowledge acquisition in the process of Bayesian network construction, AHP/D-S evidence theory is introduced into Bayesian network parameter learning. An algorithm that uses AHP/D-S evidence theory to integrate expert prior knowledge, integrates monotonic constraints and near-equal constraints for parameter learning is proposed, and simulation cases are studied. Given corrective expert prior knowledge, the new parameter-learning algorithm overcomes the shortcomings of miscalculation and miscalculation of certain small probability parameters under the condition of small sample set by MLE, and was obviously better than MLE and MAP without prior information. This paper provides a new method for acquiring prior knowledge in the Bayesian network parameter learning process.","PeriodicalId":178822,"journal":{"name":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Network Parameter Learning Method Based on AHP/D-S Evidence Theory\",\"authors\":\"Shuhuan Wei, Yanqiao Chen, Junbao Geng\",\"doi\":\"10.1145/3424978.3425149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of prior knowledge acquisition in the process of Bayesian network construction, AHP/D-S evidence theory is introduced into Bayesian network parameter learning. An algorithm that uses AHP/D-S evidence theory to integrate expert prior knowledge, integrates monotonic constraints and near-equal constraints for parameter learning is proposed, and simulation cases are studied. Given corrective expert prior knowledge, the new parameter-learning algorithm overcomes the shortcomings of miscalculation and miscalculation of certain small probability parameters under the condition of small sample set by MLE, and was obviously better than MLE and MAP without prior information. This paper provides a new method for acquiring prior knowledge in the Bayesian network parameter learning process.\",\"PeriodicalId\":178822,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Computer Science and Application Engineering\",\"volume\":\"366 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Computer Science and Application Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3424978.3425149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424978.3425149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对贝叶斯网络构建过程中存在的先验知识获取问题,将AHP/D-S证据理论引入贝叶斯网络参数学习。提出了一种利用AHP/D-S证据理论整合专家先验知识,结合单调约束和近等约束进行参数学习的算法,并进行了仿真研究。在给定修正专家先验知识的情况下,新的参数学习算法克服了MLE在小样本集条件下对某些小概率参数的误算和误算的缺点,明显优于没有先验信息的MLE和MAP。本文为贝叶斯网络参数学习过程中先验知识的获取提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Network Parameter Learning Method Based on AHP/D-S Evidence Theory
Aiming at the problem of prior knowledge acquisition in the process of Bayesian network construction, AHP/D-S evidence theory is introduced into Bayesian network parameter learning. An algorithm that uses AHP/D-S evidence theory to integrate expert prior knowledge, integrates monotonic constraints and near-equal constraints for parameter learning is proposed, and simulation cases are studied. Given corrective expert prior knowledge, the new parameter-learning algorithm overcomes the shortcomings of miscalculation and miscalculation of certain small probability parameters under the condition of small sample set by MLE, and was obviously better than MLE and MAP without prior information. This paper provides a new method for acquiring prior knowledge in the Bayesian network parameter learning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improved Algorithm of RSSI Correction and Location in Mine-well Based on Bluetooth Positioning Information Distributed Predefined-time Consensus Tracking Protocol for Multi-agent Systems Evaluation Method Study of Blog's Subject Influence and User's Subject Influence Performance Evaluation of Full Turnover-based Policy in the Flow-rack AS/RS A Hybrid Encoding Based Particle Swarm Optimizer for Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1