探索基于深度传感器的鲁棒虚拟角色控制系统及其对通信行为的影响

Yuanjie Wu, Yu Wang, Sungchul Jung, S. Hoermann, R. Lindeman
{"title":"探索基于深度传感器的鲁棒虚拟角色控制系统及其对通信行为的影响","authors":"Yuanjie Wu, Yu Wang, Sungchul Jung, S. Hoermann, R. Lindeman","doi":"10.1145/3359996.3364267","DOIUrl":null,"url":null,"abstract":"To interact as fully-tracked avatars with rich hand gestures in Virtual Reality (VR), we often need to wear a tracking suit or attach extra sensors on our bodies. User experience and performance may be impacted by the cumbersome devices and low fidelity behavior representations, especially in social scenarios where good communication is required. In this paper, we use multiple depth sensors and focus on increasing the behavioral fidelity of a participant’s virtual body representation. To investigate the impact of the depth-sensor-based avatar system (full-body tracking with hand gestures), we compared it against a controller-based avatar system (partial-body tracking with limited hand gestures). We designed a VR interview simulation for a single user to measure the effects on presence, virtual body ownership, workload, usability, and perceived self-performance. Specifically, the interview process was recorded in VR, together with all the verbal and non-verbal cues. Subjects then took a third-person view to evaluate their previous performance. Our results show that the depth-sensor-based avatar control system increased virtual body ownership and also improved the user experience. In addition, users rated their non-verbal behavior performance higher in the full-body depth-sensor-based avatar system.","PeriodicalId":393864,"journal":{"name":"Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Exploring the Use of a Robust Depth-sensor-based Avatar Control System and its Effects on Communication Behaviors\",\"authors\":\"Yuanjie Wu, Yu Wang, Sungchul Jung, S. Hoermann, R. Lindeman\",\"doi\":\"10.1145/3359996.3364267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To interact as fully-tracked avatars with rich hand gestures in Virtual Reality (VR), we often need to wear a tracking suit or attach extra sensors on our bodies. User experience and performance may be impacted by the cumbersome devices and low fidelity behavior representations, especially in social scenarios where good communication is required. In this paper, we use multiple depth sensors and focus on increasing the behavioral fidelity of a participant’s virtual body representation. To investigate the impact of the depth-sensor-based avatar system (full-body tracking with hand gestures), we compared it against a controller-based avatar system (partial-body tracking with limited hand gestures). We designed a VR interview simulation for a single user to measure the effects on presence, virtual body ownership, workload, usability, and perceived self-performance. Specifically, the interview process was recorded in VR, together with all the verbal and non-verbal cues. Subjects then took a third-person view to evaluate their previous performance. Our results show that the depth-sensor-based avatar control system increased virtual body ownership and also improved the user experience. In addition, users rated their non-verbal behavior performance higher in the full-body depth-sensor-based avatar system.\",\"PeriodicalId\":393864,\"journal\":{\"name\":\"Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3359996.3364267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359996.3364267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在虚拟现实(VR)中,我们通常需要穿上追踪服或在身上附加额外的传感器,才能与拥有丰富手势的全追踪化身进行互动。用户体验和性能可能会受到笨重的设备和低保真行为表示的影响,特别是在需要良好通信的社交场景中。在本文中,我们使用了多个深度传感器,并专注于提高参与者虚拟身体表征的行为保真度。为了研究基于深度传感器的角色系统(带有手势的全身追踪)的影响,我们将其与基于控制器的角色系统(带有有限手势的部分身体追踪)进行了比较。我们为单个用户设计了一个虚拟现实面试模拟,以衡量对存在感、虚拟身体所有权、工作量、可用性和感知自我表现的影响。具体来说,在VR中记录了面试过程,以及所有的语言和非语言线索。然后,受试者以第三人称的视角评估他们之前的表现。我们的研究结果表明,基于深度传感器的化身控制系统增加了虚拟身体的所有权,也改善了用户体验。此外,在基于全身深度传感器的虚拟形象系统中,用户对他们的非语言行为表现的评价更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Use of a Robust Depth-sensor-based Avatar Control System and its Effects on Communication Behaviors
To interact as fully-tracked avatars with rich hand gestures in Virtual Reality (VR), we often need to wear a tracking suit or attach extra sensors on our bodies. User experience and performance may be impacted by the cumbersome devices and low fidelity behavior representations, especially in social scenarios where good communication is required. In this paper, we use multiple depth sensors and focus on increasing the behavioral fidelity of a participant’s virtual body representation. To investigate the impact of the depth-sensor-based avatar system (full-body tracking with hand gestures), we compared it against a controller-based avatar system (partial-body tracking with limited hand gestures). We designed a VR interview simulation for a single user to measure the effects on presence, virtual body ownership, workload, usability, and perceived self-performance. Specifically, the interview process was recorded in VR, together with all the verbal and non-verbal cues. Subjects then took a third-person view to evaluate their previous performance. Our results show that the depth-sensor-based avatar control system increased virtual body ownership and also improved the user experience. In addition, users rated their non-verbal behavior performance higher in the full-body depth-sensor-based avatar system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IRIS: Inter-Reality Interactive Surface A Content-Aware Approach for Analysing Eye Movement Patterns in Virtual Reality Evaluation of Navigation Operations in Immersive Microscopic Visualization Investigating the Detection of Bimanual Haptic Retargeting in Virtual Reality Mixed Reality Speaker Identification as an Accessibility Tool for Deaf and Hard of Hearing Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1