基于l1稀疏恢复压缩感知的电容体层析静态成像

Nur Afny C. Andryani, D. Sudiana, D. Gunawan
{"title":"基于l1稀疏恢复压缩感知的电容体层析静态成像","authors":"Nur Afny C. Andryani, D. Sudiana, D. Gunawan","doi":"10.1109/ICSIGSYS.2017.7967068","DOIUrl":null,"url":null,"abstract":"Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrical Capacitance Volume Tomography static imaging using Compressive Sensing with l1 sparse recovery\",\"authors\":\"Nur Afny C. Andryani, D. Sudiana, D. Gunawan\",\"doi\":\"10.1109/ICSIGSYS.2017.7967068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

压缩感知(CS)框架是一种相对于香农-奈奎斯特定理而言,利用较少的测量数据来恢复信号的数学框架。它表示测量数据的维数比投影数据的维数低得多的欠定线性系统。CS的基本思想是将传感负荷转化为图像重建负荷。因此,尽管受恢复数据维度的影响,传感过程产生的测量数据较少,但理论上CS能够进行良好的信号恢复。理论上,CS应该工作于自然稀疏信号或变换域中的稀疏信号。电容体层析成像(ECVT)由于作为测量数据的电容尺寸远低于预测介电常数分布的尺寸,自然形成欠定线性系统。此外,ECVT信号自然是稀疏的。因此,压缩感知框架在理论上对ECVT成像是有希望的。本文介绍了基于压缩感知框架的ECVT静态成像技术。早期仿真结果表明,在稀疏恢复上进行l1优化的压缩感知能够有效消除ILBP(迭代学习反向传播)成像中的伸长误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical Capacitance Volume Tomography static imaging using Compressive Sensing with l1 sparse recovery
Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect) The development of IoT LoRa: A performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency On the design of LDPC-based Raptor codes for single carrier Internet of Things (SC-IoT) Benchmark data set for glaucoma detection with annotated cup to disc ratio Design of LDGM-based Raptor Codes for broadband Internet of Things using EXIT chart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1