{"title":"基于l1稀疏恢复压缩感知的电容体层析静态成像","authors":"Nur Afny C. Andryani, D. Sudiana, D. Gunawan","doi":"10.1109/ICSIGSYS.2017.7967068","DOIUrl":null,"url":null,"abstract":"Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrical Capacitance Volume Tomography static imaging using Compressive Sensing with l1 sparse recovery\",\"authors\":\"Nur Afny C. Andryani, D. Sudiana, D. Gunawan\",\"doi\":\"10.1109/ICSIGSYS.2017.7967068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical Capacitance Volume Tomography static imaging using Compressive Sensing with l1 sparse recovery
Compressive Sensing (CS) framework is mathematical framework to recover the signal by having less measurement data compared to Shannon-Nyquist theorem. It indicates the underdetermined linear system where the dimension of measurement data is much lower compared to dimension of the projected data. The basic idea of CS is to shift the sensing load into image reconstruction load. Thus, even though the sensing process produces less measurement data subject to the recovery data dimension, the CS theoretically is able to perform good signal recovery. Theoretically, CS should be working for natural sparse signal or sparse in transform domain. Electrical Capacitance Volume Tomography (ECVT) imaging forms naturally underdetermined linear system since the dimension of capacitance as the measurement data is much lower compared to dimension of predicted permittivity distribution. In addition, the ECVT signal is naturally sparse. Thus, the compressive sensing framework is theoretically promising for ECVT imaging. This paper will introduce ECVT static imaging based on compressive sensing framework. The early simulations show that compressive sensing with l1 optimization on the sparse recovery succeed to eliminate the elongation error on ECVT imaging by ILBP (Iterative Learning Back Propagation).