基于Mark III超立方体的并行图像处理工作站的设计与实现

S. Groom, M. Lee, A. Mazer, W. Williams
{"title":"基于Mark III超立方体的并行图像处理工作站的设计与实现","authors":"S. Groom, M. Lee, A. Mazer, W. Williams","doi":"10.1145/63047.63086","DOIUrl":null,"url":null,"abstract":"Various image processing algorithms have been implemented on the hypercube architecture and many success stories have been reported. However, the traditional approach to programming the hypercube has been to write programs which perform ;I single operation or a fixed set of operations upon data items. This approach has several drawbacks when considered for use in an interactive computing environment. First, it is difficult to process data with a sequence of sim;ple programs in the Mark III Hypercube because the Mark III software does not support sharing of data between successive programs. This means that data must be reloaded into the cube for each individual program. It also implies that programs should be fairly large and complete, to minimize the repeated downloading of large data items for multiple programs. However, the entire program must be able to fit within the hypercube node memory, which limits what a program can do by putting a restriction on its size. Furtbermore, large programs limit the amount of memory available for data, which must also be present in memory if the communications overhead is to be effectively reduced. The development of an interactive image processing workstation based on the: Mark III Hypercube requires satisfactory solutions to these and other problems.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"44 9-10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and implementation of a concurrent image processing workstation based on the Mark III hypercube\",\"authors\":\"S. Groom, M. Lee, A. Mazer, W. Williams\",\"doi\":\"10.1145/63047.63086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various image processing algorithms have been implemented on the hypercube architecture and many success stories have been reported. However, the traditional approach to programming the hypercube has been to write programs which perform ;I single operation or a fixed set of operations upon data items. This approach has several drawbacks when considered for use in an interactive computing environment. First, it is difficult to process data with a sequence of sim;ple programs in the Mark III Hypercube because the Mark III software does not support sharing of data between successive programs. This means that data must be reloaded into the cube for each individual program. It also implies that programs should be fairly large and complete, to minimize the repeated downloading of large data items for multiple programs. However, the entire program must be able to fit within the hypercube node memory, which limits what a program can do by putting a restriction on its size. Furtbermore, large programs limit the amount of memory available for data, which must also be present in memory if the communications overhead is to be effectively reduced. The development of an interactive image processing workstation based on the: Mark III Hypercube requires satisfactory solutions to these and other problems.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"44 9-10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/63047.63086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在超立方体架构上实现了各种图像处理算法,并报道了许多成功的案例。然而,对超立方体进行编程的传统方法是编写对数据项执行单一操作或固定操作集的程序。当考虑在交互式计算环境中使用时,这种方法有几个缺点。首先,Mark III Hypercube中的一系列简单程序很难处理数据,因为Mark III软件不支持连续程序之间的数据共享。这意味着必须为每个单独的程序将数据重新加载到数据集中。它还意味着程序应该相当大且完整,以尽量减少为多个程序重复下载大数据项。但是,整个程序必须能够容纳在超立方体节点内存中,这通过对其大小施加限制来限制程序所能做的事情。此外,大型程序限制了数据可用的内存量,如果要有效地减少通信开销,这些数据也必须存在于内存中。基于Mark III Hypercube的交互式图像处理工作站的开发需要对这些问题和其他问题进行满意的解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and implementation of a concurrent image processing workstation based on the Mark III hypercube
Various image processing algorithms have been implemented on the hypercube architecture and many success stories have been reported. However, the traditional approach to programming the hypercube has been to write programs which perform ;I single operation or a fixed set of operations upon data items. This approach has several drawbacks when considered for use in an interactive computing environment. First, it is difficult to process data with a sequence of sim;ple programs in the Mark III Hypercube because the Mark III software does not support sharing of data between successive programs. This means that data must be reloaded into the cube for each individual program. It also implies that programs should be fairly large and complete, to minimize the repeated downloading of large data items for multiple programs. However, the entire program must be able to fit within the hypercube node memory, which limits what a program can do by putting a restriction on its size. Furtbermore, large programs limit the amount of memory available for data, which must also be present in memory if the communications overhead is to be effectively reduced. The development of an interactive image processing workstation based on the: Mark III Hypercube requires satisfactory solutions to these and other problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Task allocation onto a hypercube by recursive mincut bipartitioning Comparison of two-dimensional FFT methods on the hypercube Best-first branch-and bound on a hypercube An interactive system for seismic velocity analysis QED on the connection machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1