一种新型预制钢-混凝土复合浅地板体系的推出试验

I. Ahmed, K. Tsavdaridis, F. Neysari, J. Forth
{"title":"一种新型预制钢-混凝土复合浅地板体系的推出试验","authors":"I. Ahmed, K. Tsavdaridis, F. Neysari, J. Forth","doi":"10.4995/ASCCS2018.2018.6925","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel prefabricated and shallow steel-concrete composite flooring system which is consisted of two main structural components: two C-channel steel beams and a partially encased concrete floor. The concrete floor, which is in the form of T ribbed slab sections, was constructed using two types of concrete (reinforced normal concrete and reinforced lightweight aggregate concrete). The steel edge beams partially encase the floor slab and provide clear and straight finish edges. The floor slab spans to a maximum of 2.0m inclusive of the width of the steel edges with a finished depth of only 230mm. The unique features of the proposed system are reducing the weight and the number of erection lifts (during installation) by using lighter elements (lightweight concrete and shallow steel beams) while the wider possible units have been proposed to fit on transportation tracks; further reducing the extent of site works by pre-off site fabrication, examining the material cost against the fabrication and site erection costs. For the composite slab in bending, the longitudinal shear force is transferred by a unique shear mechanism which results from the special shear connectors. This paper includes the work of a total 2 full-scale push-out tests aimed at investigating the longitudinal shear behaviour of these novel flooring systems and the effects of additional shear connectors. An analytical work is also carried out to investigate the failure mechanism of the system.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Push-Out Tests for a Novel Prefabricated Steel-Concrete Composite Shallow Flooring System\",\"authors\":\"I. Ahmed, K. Tsavdaridis, F. Neysari, J. Forth\",\"doi\":\"10.4995/ASCCS2018.2018.6925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel prefabricated and shallow steel-concrete composite flooring system which is consisted of two main structural components: two C-channel steel beams and a partially encased concrete floor. The concrete floor, which is in the form of T ribbed slab sections, was constructed using two types of concrete (reinforced normal concrete and reinforced lightweight aggregate concrete). The steel edge beams partially encase the floor slab and provide clear and straight finish edges. The floor slab spans to a maximum of 2.0m inclusive of the width of the steel edges with a finished depth of only 230mm. The unique features of the proposed system are reducing the weight and the number of erection lifts (during installation) by using lighter elements (lightweight concrete and shallow steel beams) while the wider possible units have been proposed to fit on transportation tracks; further reducing the extent of site works by pre-off site fabrication, examining the material cost against the fabrication and site erection costs. For the composite slab in bending, the longitudinal shear force is transferred by a unique shear mechanism which results from the special shear connectors. This paper includes the work of a total 2 full-scale push-out tests aimed at investigating the longitudinal shear behaviour of these novel flooring systems and the effects of additional shear connectors. An analytical work is also carried out to investigate the failure mechanism of the system.\",\"PeriodicalId\":320267,\"journal\":{\"name\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ASCCS2018.2018.6925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.6925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种新型预制浅钢-混凝土复合楼板系统,该系统由两个主要结构部件组成:两个c形槽钢梁和一个部分围合的混凝土楼板。混凝土楼板为T形肋板,采用两种类型的混凝土(钢筋普通混凝土和钢筋轻骨料混凝土)建造。钢边梁部分包裹楼板,并提供清晰和直的饰面边缘。楼板跨度最大为2.0米,包括钢边宽度,成品深度仅为230毫米。建议的系统的独特之处在于,通过使用较轻的构件(轻质混凝土和浅钢梁),减少了重量和安装升降机的数量,而更宽的单元则被建议安装在运输轨道上;进一步减少现场工程的范围,通过预现场制造,检查材料成本与制造和现场安装成本。对于处于弯曲状态的组合板,其纵向剪力的传递是通过一种独特的剪切机制实现的,这种剪切机制是由特殊的剪切连接件形成的。本文包括总共2个全尺寸推出试验的工作,旨在研究这些新型地板系统的纵向剪切行为和附加剪切连接件的影响。对系统的失效机理进行了分析研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Push-Out Tests for a Novel Prefabricated Steel-Concrete Composite Shallow Flooring System
This paper introduces a novel prefabricated and shallow steel-concrete composite flooring system which is consisted of two main structural components: two C-channel steel beams and a partially encased concrete floor. The concrete floor, which is in the form of T ribbed slab sections, was constructed using two types of concrete (reinforced normal concrete and reinforced lightweight aggregate concrete). The steel edge beams partially encase the floor slab and provide clear and straight finish edges. The floor slab spans to a maximum of 2.0m inclusive of the width of the steel edges with a finished depth of only 230mm. The unique features of the proposed system are reducing the weight and the number of erection lifts (during installation) by using lighter elements (lightweight concrete and shallow steel beams) while the wider possible units have been proposed to fit on transportation tracks; further reducing the extent of site works by pre-off site fabrication, examining the material cost against the fabrication and site erection costs. For the composite slab in bending, the longitudinal shear force is transferred by a unique shear mechanism which results from the special shear connectors. This paper includes the work of a total 2 full-scale push-out tests aimed at investigating the longitudinal shear behaviour of these novel flooring systems and the effects of additional shear connectors. An analytical work is also carried out to investigate the failure mechanism of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel one-sided push-out test for shear connectors in composite beams Bending Moment Capacity of Stainless Steel-Concrete Composite Beams COMPARISON OF DESIGN FOR COMPOSITE COLUMNS IN STEEL AND CONCRETE ACCORDING TO EUROCODE 4 AND CHINESE DESIGN CODES An innovative concrete-steel structural system allowing for a fast and simple erection Influence of joint rigidity on the elastic buckling load of sway and non-sway steel frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1