Cornelia Auer, Jens Kasten, A. Kratz, E. Zhang, I. Hotz
{"title":"自动的,张量引导的说明性向量场可视化","authors":"Cornelia Auer, Jens Kasten, A. Kratz, E. Zhang, I. Hotz","doi":"10.1109/PacificVis.2013.6596154","DOIUrl":null,"url":null,"abstract":"This paper proposes a vector field visualization, which mimics a sketch-like representation. The visualization combines two major perspectives: Large scale trends based on a strongly simplified field as background visualization and a local visualization highlighting strongly expressed features at their exact position. Each component considers the vector field itself and its spatial derivatives. The derivate is an asymmetric tensor field, which allows the deduction of scalar quantities reflecting distinctive field properties like strength of rotation or shear. The basis of the background visualization is a vector and scalar clustering approach. The local features are defined as the extrema of the respective scalar fields. Applying scalar field topology provides a profound mathematical basis for the feature extraction. All design decisions are guided by the goal of generating a simple to read visualization. To demonstrate the effectiveness of our approach, we show results for three different data sets with different complexity and characteristics.","PeriodicalId":179865,"journal":{"name":"2013 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic, tensor-guided illustrative vector field visualization\",\"authors\":\"Cornelia Auer, Jens Kasten, A. Kratz, E. Zhang, I. Hotz\",\"doi\":\"10.1109/PacificVis.2013.6596154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a vector field visualization, which mimics a sketch-like representation. The visualization combines two major perspectives: Large scale trends based on a strongly simplified field as background visualization and a local visualization highlighting strongly expressed features at their exact position. Each component considers the vector field itself and its spatial derivatives. The derivate is an asymmetric tensor field, which allows the deduction of scalar quantities reflecting distinctive field properties like strength of rotation or shear. The basis of the background visualization is a vector and scalar clustering approach. The local features are defined as the extrema of the respective scalar fields. Applying scalar field topology provides a profound mathematical basis for the feature extraction. All design decisions are guided by the goal of generating a simple to read visualization. To demonstrate the effectiveness of our approach, we show results for three different data sets with different complexity and characteristics.\",\"PeriodicalId\":179865,\"journal\":{\"name\":\"2013 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis.2013.6596154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2013.6596154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic, tensor-guided illustrative vector field visualization
This paper proposes a vector field visualization, which mimics a sketch-like representation. The visualization combines two major perspectives: Large scale trends based on a strongly simplified field as background visualization and a local visualization highlighting strongly expressed features at their exact position. Each component considers the vector field itself and its spatial derivatives. The derivate is an asymmetric tensor field, which allows the deduction of scalar quantities reflecting distinctive field properties like strength of rotation or shear. The basis of the background visualization is a vector and scalar clustering approach. The local features are defined as the extrema of the respective scalar fields. Applying scalar field topology provides a profound mathematical basis for the feature extraction. All design decisions are guided by the goal of generating a simple to read visualization. To demonstrate the effectiveness of our approach, we show results for three different data sets with different complexity and characteristics.