{"title":"时序数据环境下的异常检测","authors":"Doyeon Kim, Taejin Lee","doi":"10.1145/3440943.3444353","DOIUrl":null,"url":null,"abstract":"Typical label data detect anomaly due to the relationship between inputs and labels, but time-series data are more demanding in detecting anomalies because they detect anomaly based on time-varying values. To solve this problem, this paper proposed Stacked-Autoencoder based data detection technique with ICS dataset among time series data. The Loss value was calculated as CDF and determined to be a suspicious event if it was greater than the arbitrarily specified threshold value. The experiment was carried out by designating 0.5, 0.7, 0.9 and 0.98, and 0.98 showed the best result with an accuracy of about 96%.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"271 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly detection in time-series data environment\",\"authors\":\"Doyeon Kim, Taejin Lee\",\"doi\":\"10.1145/3440943.3444353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical label data detect anomaly due to the relationship between inputs and labels, but time-series data are more demanding in detecting anomalies because they detect anomaly based on time-varying values. To solve this problem, this paper proposed Stacked-Autoencoder based data detection technique with ICS dataset among time series data. The Loss value was calculated as CDF and determined to be a suspicious event if it was greater than the arbitrarily specified threshold value. The experiment was carried out by designating 0.5, 0.7, 0.9 and 0.98, and 0.98 showed the best result with an accuracy of about 96%.\",\"PeriodicalId\":310247,\"journal\":{\"name\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"volume\":\"271 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440943.3444353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

典型的标签数据检测异常是基于输入与标签之间的关系,而时间序列数据检测异常是基于时变值的,对异常的检测要求更高。为了解决这一问题,本文提出了基于堆叠自编码器的时间序列数据检测技术。Loss值计算为CDF,如果Loss值大于任意指定的阈值,则确定为可疑事件。通过指定0.5、0.7、0.9和0.98进行实验,以0.98为最佳结果,准确率约为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly detection in time-series data environment
Typical label data detect anomaly due to the relationship between inputs and labels, but time-series data are more demanding in detecting anomalies because they detect anomaly based on time-varying values. To solve this problem, this paper proposed Stacked-Autoencoder based data detection technique with ICS dataset among time series data. The Loss value was calculated as CDF and determined to be a suspicious event if it was greater than the arbitrarily specified threshold value. The experiment was carried out by designating 0.5, 0.7, 0.9 and 0.98, and 0.98 showed the best result with an accuracy of about 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1