基于状态机和延迟更新复制方案的模型驱动比较

P. Wojciechowski, Tadeusz Kobus, Maciej Kokociński
{"title":"基于状态机和延迟更新复制方案的模型驱动比较","authors":"P. Wojciechowski, Tadeusz Kobus, Maciej Kokociński","doi":"10.1109/SRDS.2012.44","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze and experimentally compare state-machine-based and deferred-update (or transactional) replication, both relying on atomic broadcast. We define a model that describes the upper and lower bounds on the execution of concurrent requests by a service replicated using either scheme. The model is parametrized by the degree of parallelism in either scheme, the number of processor cores, and the type of requests. We analytically compared both schemes and a non-replicated service, considering a bcast- and request-execution-dominant workloads. To evaluate transactional replication experimentally, we developed Paxos STM---a novel fault-tolerant distributed software transactional memory with programming constructs for transaction creation, abort, and retry. For state-machine-based replication, we used JPaxos. Both systems share the same implementat ion of atomic broadcast based on the Paxos algorithm. We present the results of performance evaluation of both replication schemes, and a non-replicated (thus prone to failures) service, considering various workloads. The key result of our theoretical and experimental work is that neither system is superior in all cases. We discuss these results in the paper.","PeriodicalId":447700,"journal":{"name":"2012 IEEE 31st Symposium on Reliable Distributed Systems","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Model-Driven Comparison of State-Machine-Based and Deferred-Update Replication Schemes\",\"authors\":\"P. Wojciechowski, Tadeusz Kobus, Maciej Kokociński\",\"doi\":\"10.1109/SRDS.2012.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze and experimentally compare state-machine-based and deferred-update (or transactional) replication, both relying on atomic broadcast. We define a model that describes the upper and lower bounds on the execution of concurrent requests by a service replicated using either scheme. The model is parametrized by the degree of parallelism in either scheme, the number of processor cores, and the type of requests. We analytically compared both schemes and a non-replicated service, considering a bcast- and request-execution-dominant workloads. To evaluate transactional replication experimentally, we developed Paxos STM---a novel fault-tolerant distributed software transactional memory with programming constructs for transaction creation, abort, and retry. For state-machine-based replication, we used JPaxos. Both systems share the same implementat ion of atomic broadcast based on the Paxos algorithm. We present the results of performance evaluation of both replication schemes, and a non-replicated (thus prone to failures) service, considering various workloads. The key result of our theoretical and experimental work is that neither system is superior in all cases. We discuss these results in the paper.\",\"PeriodicalId\":447700,\"journal\":{\"name\":\"2012 IEEE 31st Symposium on Reliable Distributed Systems\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 31st Symposium on Reliable Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2012.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 31st Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2012.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们分析并实验比较了基于状态机的复制和延迟更新(或事务性)复制,两者都依赖于原子广播。我们定义了一个模型,该模型描述了使用任一方案复制的服务执行并发请求的上限和下限。该模型由两种方案的并行度、处理器核数和请求类型进行参数化。我们分析比较了两种模式和非复制服务,考虑了以广播和请求执行为主的工作负载。为了实验性地评估事务性复制,我们开发了Paxos STM——一种新型的容错分布式软件事务性内存,具有用于事务创建、中止和重试的编程构造。对于基于状态机的复制,我们使用了JPaxos。两个系统共享基于Paxos算法的原子广播的相同实现。我们给出了考虑各种工作负载的复制方案和非复制(因此容易出现故障)服务的性能评估结果。我们的理论和实验工作的关键结果是,没有一个系统在所有情况下都是优越的。本文对这些结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Driven Comparison of State-Machine-Based and Deferred-Update Replication Schemes
In this paper, we analyze and experimentally compare state-machine-based and deferred-update (or transactional) replication, both relying on atomic broadcast. We define a model that describes the upper and lower bounds on the execution of concurrent requests by a service replicated using either scheme. The model is parametrized by the degree of parallelism in either scheme, the number of processor cores, and the type of requests. We analytically compared both schemes and a non-replicated service, considering a bcast- and request-execution-dominant workloads. To evaluate transactional replication experimentally, we developed Paxos STM---a novel fault-tolerant distributed software transactional memory with programming constructs for transaction creation, abort, and retry. For state-machine-based replication, we used JPaxos. Both systems share the same implementat ion of atomic broadcast based on the Paxos algorithm. We present the results of performance evaluation of both replication schemes, and a non-replicated (thus prone to failures) service, considering various workloads. The key result of our theoretical and experimental work is that neither system is superior in all cases. We discuss these results in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Identifying Root Causes of Faults in Service-Based Applications Query Plan Execution in a Heterogeneous Stream Management System for Situational Awareness Towards Reliable Communication in Intelligent Transportation Systems RADAR: Adaptive Rate Allocation in Distributed Stream Processing Systems under Bursty Workloads Availability Modeling and Analysis for Data Backup and Restore Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1