处理“未知的未知”-使用卷积神经网络对CAD开放集数据集中的3D几何图形进行分类

Georg Schmidt, S. Stüring, Norman Richnow, Ingo Siegert
{"title":"处理“未知的未知”-使用卷积神经网络对CAD开放集数据集中的3D几何图形进行分类","authors":"Georg Schmidt, S. Stüring, Norman Richnow, Ingo Siegert","doi":"10.36965/ojakm.2022.10(1)62-76","DOIUrl":null,"url":null,"abstract":"This paper refers to the application of Convolutional Neural Networks (CNNs) for the classification of 3D geometries from Computer-Aided Design (CAD) datasets with a large proportion of unknown unknowns (classes unknown after training). The motivation of the work is the automatic recognition of standard parts in the large CAD-based image data set and thus, reducing the time required for the manual preparation of the data set. The classification is based on a threshold value of the Softmax output layer (first criterion), as well as on three different methods of a second criterion. The three methods for the second criterion are the comparison of metadata relating to the geometries, the comparison of feature vectors from previous dense layers of the CNN with a Spearman correlation, and the distance-based difference between multivariate Gaussian models of these feature vectors using Kullback-Leibler divergence. It is confirmed that all three methods are suitable to solve an open set problem in large 3D datasets (more than 1000 different geometries). Classification and training are image-based using different multi-view representations of the geometries.","PeriodicalId":325473,"journal":{"name":"Online Journal of Applied Knowledge Management","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling of “unknown unknowns” - classification of 3D geometries from CAD open set datasets using Convolutional Neural Networks\",\"authors\":\"Georg Schmidt, S. Stüring, Norman Richnow, Ingo Siegert\",\"doi\":\"10.36965/ojakm.2022.10(1)62-76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper refers to the application of Convolutional Neural Networks (CNNs) for the classification of 3D geometries from Computer-Aided Design (CAD) datasets with a large proportion of unknown unknowns (classes unknown after training). The motivation of the work is the automatic recognition of standard parts in the large CAD-based image data set and thus, reducing the time required for the manual preparation of the data set. The classification is based on a threshold value of the Softmax output layer (first criterion), as well as on three different methods of a second criterion. The three methods for the second criterion are the comparison of metadata relating to the geometries, the comparison of feature vectors from previous dense layers of the CNN with a Spearman correlation, and the distance-based difference between multivariate Gaussian models of these feature vectors using Kullback-Leibler divergence. It is confirmed that all three methods are suitable to solve an open set problem in large 3D datasets (more than 1000 different geometries). Classification and training are image-based using different multi-view representations of the geometries.\",\"PeriodicalId\":325473,\"journal\":{\"name\":\"Online Journal of Applied Knowledge Management\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Journal of Applied Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36965/ojakm.2022.10(1)62-76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Journal of Applied Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36965/ojakm.2022.10(1)62-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将卷积神经网络(Convolutional Neural Networks, cnn)应用于含有大量未知未知数(训练后未知的类别)的计算机辅助设计(computer aided Design, CAD)数据集的三维几何分类。这项工作的动机是在基于cad的大型图像数据集中自动识别标准件,从而减少人工准备数据集所需的时间。分类基于Softmax输出层的阈值(第一个标准),以及第二个标准的三种不同方法。第二个标准的三种方法分别是:与几何图形相关的元数据的比较,使用Spearman相关的CNN先前密集层的特征向量的比较,以及使用Kullback-Leibler散度的这些特征向量的多元高斯模型之间基于距离的差异。结果表明,这三种方法都适用于求解大型三维数据集(超过1000种不同几何形状)中的开集问题。分类和训练是基于图像的,使用不同的几何图形的多视图表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling of “unknown unknowns” - classification of 3D geometries from CAD open set datasets using Convolutional Neural Networks
This paper refers to the application of Convolutional Neural Networks (CNNs) for the classification of 3D geometries from Computer-Aided Design (CAD) datasets with a large proportion of unknown unknowns (classes unknown after training). The motivation of the work is the automatic recognition of standard parts in the large CAD-based image data set and thus, reducing the time required for the manual preparation of the data set. The classification is based on a threshold value of the Softmax output layer (first criterion), as well as on three different methods of a second criterion. The three methods for the second criterion are the comparison of metadata relating to the geometries, the comparison of feature vectors from previous dense layers of the CNN with a Spearman correlation, and the distance-based difference between multivariate Gaussian models of these feature vectors using Kullback-Leibler divergence. It is confirmed that all three methods are suitable to solve an open set problem in large 3D datasets (more than 1000 different geometries). Classification and training are image-based using different multi-view representations of the geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding knowledge hiding behaviors in the workplace using a serious game data collection approach Special issue editorial: Knowledge hiding and knowledge hoarding in different environments Knowledge hiding and knowledge hoarding: Using grounded theory for conceptual development The impact of knowledge hiding and toxic leadership on knowledge worker productivity – Evidence from IT sector of Pakistan Pilot testing of experimental procedures to measure user's judgment errors in simulated social engineering attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1