Oded Leiba, Yechiav Yitzchak, Ron Bitton, Asaf Nadler, A. Shabtai
{"title":"基于分布式无信任证明的物联网软件更新激励交付网络","authors":"Oded Leiba, Yechiav Yitzchak, Ron Bitton, Asaf Nadler, A. Shabtai","doi":"10.1109/EuroSPW.2018.00011","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) network of connected devices currently contains more than 11 billion devices and is estimated to double in size within the next four years. The prevalence of these devices makes them an ideal target for attackers. To reduce the risk of attacks vendors routinely deliver security updates (patches) for their devices. The delivery of security updates becomes challenging due to the issue of scalability as the number of devices may grow much quicker than vendors' distribution systems. Previous studies have suggested a permissionless and decentralized blockchainbased network in which nodes can host and deliver security updates, thus the addition of new nodes scales out the network. However, these studies do not provide an incentive for nodes to join the network, making it unlikely for nodes to freely contribute their hosting space, bandwidth, and computation resources. In this paper, we propose a novel decentralized IoT software update delivery network in which participating nodes (referred to as distributors) are compensated by vendors with digital currency for delivering updates to devices. Upon the release of a new security update, a vendor will make a commitment to provide digital currency to distributors that deliver the update; the commitment will be made with the use of smart contracts, and hence will be public, binding, and irreversible. The smart contract promises compensation to any distributor that provides proof-of-distribution, which is unforgeable proof that a single update was delivered to a single device. A distributor acquires the proof-of-distribution by exchanging a security update for a device signature using the Zero-Knowledge Contingent Payment (ZKCP) trustless data exchange protocol. Eliminating the need for trust between the security update distributor and the security consumer (IoT device) by providing fair compensation, can significantly increase the number of distributors, thus facilitating rapid scale out.","PeriodicalId":326280,"journal":{"name":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Incentivized Delivery Network of IoT Software Updates Based on Trustless Proof-of-Distribution\",\"authors\":\"Oded Leiba, Yechiav Yitzchak, Ron Bitton, Asaf Nadler, A. Shabtai\",\"doi\":\"10.1109/EuroSPW.2018.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) network of connected devices currently contains more than 11 billion devices and is estimated to double in size within the next four years. The prevalence of these devices makes them an ideal target for attackers. To reduce the risk of attacks vendors routinely deliver security updates (patches) for their devices. The delivery of security updates becomes challenging due to the issue of scalability as the number of devices may grow much quicker than vendors' distribution systems. Previous studies have suggested a permissionless and decentralized blockchainbased network in which nodes can host and deliver security updates, thus the addition of new nodes scales out the network. However, these studies do not provide an incentive for nodes to join the network, making it unlikely for nodes to freely contribute their hosting space, bandwidth, and computation resources. In this paper, we propose a novel decentralized IoT software update delivery network in which participating nodes (referred to as distributors) are compensated by vendors with digital currency for delivering updates to devices. Upon the release of a new security update, a vendor will make a commitment to provide digital currency to distributors that deliver the update; the commitment will be made with the use of smart contracts, and hence will be public, binding, and irreversible. The smart contract promises compensation to any distributor that provides proof-of-distribution, which is unforgeable proof that a single update was delivered to a single device. A distributor acquires the proof-of-distribution by exchanging a security update for a device signature using the Zero-Knowledge Contingent Payment (ZKCP) trustless data exchange protocol. Eliminating the need for trust between the security update distributor and the security consumer (IoT device) by providing fair compensation, can significantly increase the number of distributors, thus facilitating rapid scale out.\",\"PeriodicalId\":326280,\"journal\":{\"name\":\"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuroSPW.2018.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSPW.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incentivized Delivery Network of IoT Software Updates Based on Trustless Proof-of-Distribution
The Internet of Things (IoT) network of connected devices currently contains more than 11 billion devices and is estimated to double in size within the next four years. The prevalence of these devices makes them an ideal target for attackers. To reduce the risk of attacks vendors routinely deliver security updates (patches) for their devices. The delivery of security updates becomes challenging due to the issue of scalability as the number of devices may grow much quicker than vendors' distribution systems. Previous studies have suggested a permissionless and decentralized blockchainbased network in which nodes can host and deliver security updates, thus the addition of new nodes scales out the network. However, these studies do not provide an incentive for nodes to join the network, making it unlikely for nodes to freely contribute their hosting space, bandwidth, and computation resources. In this paper, we propose a novel decentralized IoT software update delivery network in which participating nodes (referred to as distributors) are compensated by vendors with digital currency for delivering updates to devices. Upon the release of a new security update, a vendor will make a commitment to provide digital currency to distributors that deliver the update; the commitment will be made with the use of smart contracts, and hence will be public, binding, and irreversible. The smart contract promises compensation to any distributor that provides proof-of-distribution, which is unforgeable proof that a single update was delivered to a single device. A distributor acquires the proof-of-distribution by exchanging a security update for a device signature using the Zero-Knowledge Contingent Payment (ZKCP) trustless data exchange protocol. Eliminating the need for trust between the security update distributor and the security consumer (IoT device) by providing fair compensation, can significantly increase the number of distributors, thus facilitating rapid scale out.