基于遗传规划的三维手部跟踪和手势识别框架

A. El-Sawah, C. Joslin, N. Georganas, E. Petriu
{"title":"基于遗传规划的三维手部跟踪和手势识别框架","authors":"A. El-Sawah, C. Joslin, N. Georganas, E. Petriu","doi":"10.1109/CRV.2007.3","DOIUrl":null,"url":null,"abstract":"In this paper we present a framework for 3D hand tracking and dynamic gesture recognition using a single camera. Hand tracking is performed in a two step process: we first generate 3D hand posture hypothesis using geometric and kinematics inverse transformations, and then validate the hypothesis by projecting the postures on the image plane and comparing the projected model with the ground truth using a probabilistic observation model. Dynamic gesture recognition is performed using a Dynamic Bayesian Network model. The framework utilizes elements of soft computing to resolve the ambiguity inherent in vision-based tracking by producing a fuzzy hand posture output by the hand tracking module and feeding back potential posture hypothesis from the gesture recognition module.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A Framework for 3D Hand Tracking and Gesture Recognition using Elements of Genetic Programming\",\"authors\":\"A. El-Sawah, C. Joslin, N. Georganas, E. Petriu\",\"doi\":\"10.1109/CRV.2007.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a framework for 3D hand tracking and dynamic gesture recognition using a single camera. Hand tracking is performed in a two step process: we first generate 3D hand posture hypothesis using geometric and kinematics inverse transformations, and then validate the hypothesis by projecting the postures on the image plane and comparing the projected model with the ground truth using a probabilistic observation model. Dynamic gesture recognition is performed using a Dynamic Bayesian Network model. The framework utilizes elements of soft computing to resolve the ambiguity inherent in vision-based tracking by producing a fuzzy hand posture output by the hand tracking module and feeding back potential posture hypothesis from the gesture recognition module.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

在本文中,我们提出了一个使用单个相机进行三维手部跟踪和动态手势识别的框架。手部跟踪分两步进行:首先使用几何和运动学逆变换生成三维手部姿势假设,然后通过在图像平面上投影姿势并使用概率观察模型将投影模型与地面真实情况进行比较来验证假设。动态手势识别是使用动态贝叶斯网络模型执行的。该框架利用软计算的元素,通过手部跟踪模块产生一个模糊的手部姿态输出,并从手势识别模块反馈潜在的姿态假设,来解决基于视觉的跟踪固有的模糊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for 3D Hand Tracking and Gesture Recognition using Elements of Genetic Programming
In this paper we present a framework for 3D hand tracking and dynamic gesture recognition using a single camera. Hand tracking is performed in a two step process: we first generate 3D hand posture hypothesis using geometric and kinematics inverse transformations, and then validate the hypothesis by projecting the postures on the image plane and comparing the projected model with the ground truth using a probabilistic observation model. Dynamic gesture recognition is performed using a Dynamic Bayesian Network model. The framework utilizes elements of soft computing to resolve the ambiguity inherent in vision-based tracking by producing a fuzzy hand posture output by the hand tracking module and feeding back potential posture hypothesis from the gesture recognition module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM Version and vergence control of a stereo camera head by fitting the movement into the Hering's law Using Feature Selection For Object Segmentation and Tracking Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered scenes? A Simple Operator for Very Precise Estimation of Ellipses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1