基于esprit的改进体积散射模型散射功率分解

Hiroyoshi Yamada, R. Komaya, Y. Yamaguchi, R. Sato
{"title":"基于esprit的改进体积散射模型散射功率分解","authors":"Hiroyoshi Yamada, R. Komaya, Y. Yamaguchi, R. Sato","doi":"10.1109/IGARSS.2010.5651248","DOIUrl":null,"url":null,"abstract":"The scattering power decomposition for POLSAR data is one of the powerful tools in the radar polarimetry. There are several model-based decomposition techniques. However, since the number of independent observables in POLSAR images is limited, these techniques require several assumptions to obtain unique solution. The authors have proposed an alternative technique with POL-InSAR dataset. By using the POL-InSAR dataset, we can increase the number of observables. However, selection of volume scattering component was still a problem. Recently, Dr. Arii et. al., proposed a generalized volume scattering model, and applied it to the POLSAR dataset with the adaptive non-negative eigenvalue decomposition technique. In this report, we appy the model to the ESPRIT-based POL-InSAR decomposition technique and verify the estimation performance experimentally.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Esprit-based scattering power decomposition by using modified volume scattering model\",\"authors\":\"Hiroyoshi Yamada, R. Komaya, Y. Yamaguchi, R. Sato\",\"doi\":\"10.1109/IGARSS.2010.5651248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering power decomposition for POLSAR data is one of the powerful tools in the radar polarimetry. There are several model-based decomposition techniques. However, since the number of independent observables in POLSAR images is limited, these techniques require several assumptions to obtain unique solution. The authors have proposed an alternative technique with POL-InSAR dataset. By using the POL-InSAR dataset, we can increase the number of observables. However, selection of volume scattering component was still a problem. Recently, Dr. Arii et. al., proposed a generalized volume scattering model, and applied it to the POLSAR dataset with the adaptive non-negative eigenvalue decomposition technique. In this report, we appy the model to the ESPRIT-based POL-InSAR decomposition technique and verify the estimation performance experimentally.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5651248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5651248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

POLSAR数据的散射功率分解是雷达偏振测量的有力工具之一。有几种基于模型的分解技术。然而,由于POLSAR图像中独立观测点的数量有限,这些技术需要几个假设才能获得唯一解。作者提出了一种基于POL-InSAR数据集的替代技术。通过使用POL-InSAR数据集,我们可以增加可观测数据的数量。然而,体积散射分量的选择仍然是一个问题。最近,Dr. Arii等人提出了一种广义体散射模型,并利用自适应非负特征值分解技术将其应用于POLSAR数据集。在本报告中,我们将该模型应用于基于esprit的POL-InSAR分解技术,并通过实验验证了估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Esprit-based scattering power decomposition by using modified volume scattering model
The scattering power decomposition for POLSAR data is one of the powerful tools in the radar polarimetry. There are several model-based decomposition techniques. However, since the number of independent observables in POLSAR images is limited, these techniques require several assumptions to obtain unique solution. The authors have proposed an alternative technique with POL-InSAR dataset. By using the POL-InSAR dataset, we can increase the number of observables. However, selection of volume scattering component was still a problem. Recently, Dr. Arii et. al., proposed a generalized volume scattering model, and applied it to the POLSAR dataset with the adaptive non-negative eigenvalue decomposition technique. In this report, we appy the model to the ESPRIT-based POL-InSAR decomposition technique and verify the estimation performance experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One micron laser technology advancements at GSFC Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data The microasar experiment on CASIE-09 A method to estimate Snow Water Equivalent using multi-angle X-band radar observations Detection and correction of spectral and spatial misregistrations for hyperspectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1