PSSO:政治松鼠搜索优化器驱动的肺癌严重程度检测和分类的深度学习

Avishek Choudhury, S. Balasubramaniam, A.V. Pradeep Kumar, S. Karthikeyan, Sanjay Nakharu Prasad Kumar
{"title":"PSSO:政治松鼠搜索优化器驱动的肺癌严重程度检测和分类的深度学习","authors":"Avishek Choudhury, S. Balasubramaniam, A.V. Pradeep Kumar, S. Karthikeyan, Sanjay Nakharu Prasad Kumar","doi":"10.1142/s0219622023500189","DOIUrl":null,"url":null,"abstract":"Lung cancer accounts for about 7.6 million deaths annually worldwide. Early identification of lung cancer is essential for reducing preventable deaths. In this paper, we developed a Political Squirrel Search Optimization (PSSO)-based deep learning scheme for efficacious lung cancer recognition and classification. We used Spine General Adversarial Network (Spine GAN) to segment lung lobe regions where a Deep Neuro Fuzzy Network (DNFN) classifier forecasts cancerous areas. A Deep Residual Network (DRN) is also used to determine the various cancer severity levels. The Political Optimizer (PO) and Squirrel Search Algorithm (SSA) were combined to create the newly announced PSSO method. Experimental outcomes are assessed using the dataset of images from the Lung Image Database Consortium.","PeriodicalId":257183,"journal":{"name":"International Journal of Information Technology & Decision Making","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSSO: Political Squirrel Search Optimizer driven Deep learning for severity level detection and classification of Lung cancer\",\"authors\":\"Avishek Choudhury, S. Balasubramaniam, A.V. Pradeep Kumar, S. Karthikeyan, Sanjay Nakharu Prasad Kumar\",\"doi\":\"10.1142/s0219622023500189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer accounts for about 7.6 million deaths annually worldwide. Early identification of lung cancer is essential for reducing preventable deaths. In this paper, we developed a Political Squirrel Search Optimization (PSSO)-based deep learning scheme for efficacious lung cancer recognition and classification. We used Spine General Adversarial Network (Spine GAN) to segment lung lobe regions where a Deep Neuro Fuzzy Network (DNFN) classifier forecasts cancerous areas. A Deep Residual Network (DRN) is also used to determine the various cancer severity levels. The Political Optimizer (PO) and Squirrel Search Algorithm (SSA) were combined to create the newly announced PSSO method. Experimental outcomes are assessed using the dataset of images from the Lung Image Database Consortium.\",\"PeriodicalId\":257183,\"journal\":{\"name\":\"International Journal of Information Technology & Decision Making\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology & Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622023500189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology & Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622023500189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全世界每年约有760万人死于肺癌。早期发现肺癌对于减少可预防的死亡至关重要。在本文中,我们开发了一种基于政治松鼠搜索优化(PSSO)的深度学习方案,用于有效的肺癌识别和分类。我们使用脊柱通用对抗网络(Spine GAN)来分割肺叶区域,其中深度神经模糊网络(DNFN)分类器预测癌变区域。深度残差网络(DRN)也被用来确定不同的癌症严重程度。将政治优化器(PO)和松鼠搜索算法(SSA)相结合,创建了新发布的PSSO方法。使用来自肺图像数据库联盟的图像数据集评估实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSSO: Political Squirrel Search Optimizer driven Deep learning for severity level detection and classification of Lung cancer
Lung cancer accounts for about 7.6 million deaths annually worldwide. Early identification of lung cancer is essential for reducing preventable deaths. In this paper, we developed a Political Squirrel Search Optimization (PSSO)-based deep learning scheme for efficacious lung cancer recognition and classification. We used Spine General Adversarial Network (Spine GAN) to segment lung lobe regions where a Deep Neuro Fuzzy Network (DNFN) classifier forecasts cancerous areas. A Deep Residual Network (DRN) is also used to determine the various cancer severity levels. The Political Optimizer (PO) and Squirrel Search Algorithm (SSA) were combined to create the newly announced PSSO method. Experimental outcomes are assessed using the dataset of images from the Lung Image Database Consortium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect Analysis of COVID-19 on China's Capital Market for Property-Rights Exchange Based on Functional Clustering Operational risk measurement: An optimal timescale selection method based on information entropy Modeling photovoltaic facilities via fuzzy sets and linguistic Petri nets Performance assessment of business process optimisation algorithms using a prototype dataset generator Ecological, Social and Governance Impact on the Company's Performance: Information Technology Sector Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1