使用二部图匹配检测图像集合中的对象

Pengfei Xu, Ren Chen, Yufang Ning
{"title":"使用二部图匹配检测图像集合中的对象","authors":"Pengfei Xu, Ren Chen, Yufang Ning","doi":"10.1109/ICSAI.2012.6223420","DOIUrl":null,"url":null,"abstract":"Object-based image retrieval (OBIR) problem, in which the user is only interested in a fraction of the image, remains unsatisfactory, as it relies highly on accuracy. To address this problem, a novel method basing on bipartite graph matching is proposed in this paper. On the basis of the extraction of image features, we define a cost function according to the bipartite graph theory and minimize it by using the optimization technique to obtain an optimal map. Then, we calculate the mahalanobis distance to eliminate the mismatched points, since it takes into account the distribution of matched points. Finally, we apply the measure of coefficient of variation to evaluate the discrete degree and rerank the retrieved images. The experimental results on real video sequences and Caltech256 dataset demonstrate the effectiveness of our approach.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting objects in image collections using bipartite graph matching\",\"authors\":\"Pengfei Xu, Ren Chen, Yufang Ning\",\"doi\":\"10.1109/ICSAI.2012.6223420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object-based image retrieval (OBIR) problem, in which the user is only interested in a fraction of the image, remains unsatisfactory, as it relies highly on accuracy. To address this problem, a novel method basing on bipartite graph matching is proposed in this paper. On the basis of the extraction of image features, we define a cost function according to the bipartite graph theory and minimize it by using the optimization technique to obtain an optimal map. Then, we calculate the mahalanobis distance to eliminate the mismatched points, since it takes into account the distribution of matched points. Finally, we apply the measure of coefficient of variation to evaluate the discrete degree and rerank the retrieved images. The experimental results on real video sequences and Caltech256 dataset demonstrate the effectiveness of our approach.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于对象的图像检索(OBIR)问题,用户只对图像的一小部分感兴趣,仍然不能令人满意,因为它高度依赖于准确性。为了解决这一问题,本文提出了一种基于二部图匹配的新方法。在提取图像特征的基础上,根据二部图理论定义代价函数,并利用优化技术对代价函数进行最小化,得到最优映射。然后,我们计算马氏距离来消除不匹配点,因为它考虑了匹配点的分布。最后,我们利用变异系数的度量来评估图像的离散程度并对检索到的图像进行重新排序。在真实视频序列和Caltech256数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting objects in image collections using bipartite graph matching
Object-based image retrieval (OBIR) problem, in which the user is only interested in a fraction of the image, remains unsatisfactory, as it relies highly on accuracy. To address this problem, a novel method basing on bipartite graph matching is proposed in this paper. On the basis of the extraction of image features, we define a cost function according to the bipartite graph theory and minimize it by using the optimization technique to obtain an optimal map. Then, we calculate the mahalanobis distance to eliminate the mismatched points, since it takes into account the distribution of matched points. Finally, we apply the measure of coefficient of variation to evaluate the discrete degree and rerank the retrieved images. The experimental results on real video sequences and Caltech256 dataset demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1