基于投影光扩散的移动辅助机器人一般目标识别

P. Papadakis, David Filliat
{"title":"基于投影光扩散的移动辅助机器人一般目标识别","authors":"P. Papadakis, David Filliat","doi":"10.1109/WACVW.2018.00013","DOIUrl":null,"url":null,"abstract":"A number of assistive robot services depend on the classification of objects while dealing with an increased volume of sensory data, scene variability and limited computational resources. We propose using more concise representations via a seamless combination of photometric and geometric features fused by exploiting local photometric/geometric correlation and employing domain transform filtering in order to recover scene structure. This is obtained through a projective light diffusion imaging process (PLDI) which allows capturing surface orientation, image edges and global depth gradients into a single image. Object candidates are finally encoded into a discriminative, wavelet-based descriptor allowing very fast object queries. Experiments with an indoor robot demonstrate improved classification performance compared to alternative methods and an overall superior discriminative power compared to state-of-the-art unsupervised descriptors within ModelNet10 benchmark.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generic Object Discrimination for Mobile Assistive Robots Using Projective Light Diffusion\",\"authors\":\"P. Papadakis, David Filliat\",\"doi\":\"10.1109/WACVW.2018.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of assistive robot services depend on the classification of objects while dealing with an increased volume of sensory data, scene variability and limited computational resources. We propose using more concise representations via a seamless combination of photometric and geometric features fused by exploiting local photometric/geometric correlation and employing domain transform filtering in order to recover scene structure. This is obtained through a projective light diffusion imaging process (PLDI) which allows capturing surface orientation, image edges and global depth gradients into a single image. Object candidates are finally encoded into a discriminative, wavelet-based descriptor allowing very fast object queries. Experiments with an indoor robot demonstrate improved classification performance compared to alternative methods and an overall superior discriminative power compared to state-of-the-art unsupervised descriptors within ModelNet10 benchmark.\",\"PeriodicalId\":301220,\"journal\":{\"name\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"415 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2018.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多辅助机器人服务依赖于物体分类,同时处理越来越多的感官数据、场景变化和有限的计算资源。我们建议使用更简洁的表示,通过利用局部光度/几何相关性融合的光度和几何特征的无缝组合,并采用域变换滤波来恢复场景结构。这是通过投射光扩散成像过程(PLDI)获得的,该过程允许将表面方向,图像边缘和全局深度梯度捕获到单个图像中。候选对象最终被编码成一个判别的、基于小波的描述符,允许非常快速的对象查询。与其他方法相比,室内机器人的实验表明,与ModelNet10基准中最先进的无监督描述符相比,其分类性能有所提高,总体判别能力也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generic Object Discrimination for Mobile Assistive Robots Using Projective Light Diffusion
A number of assistive robot services depend on the classification of objects while dealing with an increased volume of sensory data, scene variability and limited computational resources. We propose using more concise representations via a seamless combination of photometric and geometric features fused by exploiting local photometric/geometric correlation and employing domain transform filtering in order to recover scene structure. This is obtained through a projective light diffusion imaging process (PLDI) which allows capturing surface orientation, image edges and global depth gradients into a single image. Object candidates are finally encoded into a discriminative, wavelet-based descriptor allowing very fast object queries. Experiments with an indoor robot demonstrate improved classification performance compared to alternative methods and an overall superior discriminative power compared to state-of-the-art unsupervised descriptors within ModelNet10 benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calorific Expenditure Estimation Using Deep Convolutional Network Features Evaluating a Convolutional Neural Network on Short-Wave Infra-Red Images Facial Attributes Guided Deep Sketch-to-Photo Synthesis Learning Visual Engagement for Trauma Recovery A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1