{"title":"模拟量子寄存器解纠缠","authors":"Paweł Ryszawa","doi":"10.5604/01.3001.0012.2003","DOIUrl":null,"url":null,"abstract":"Implementing quantum-inspired algorithms on classical computers suffers trade-off between the necessity of saving operational memory and the amount of memory necessary to fully represent a quantum state with possible entanglement. The latter is well known to consume the memory exponentially in the number of qubits. This paper sketches out the idea on how to reduce significantly the amount of necessary memory while distorting the entanglement moderately or not at all. At present, considered are real nonnegative probability amplitudes.","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling quantum register disentanglement\",\"authors\":\"Paweł Ryszawa\",\"doi\":\"10.5604/01.3001.0012.2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing quantum-inspired algorithms on classical computers suffers trade-off between the necessity of saving operational memory and the amount of memory necessary to fully represent a quantum state with possible entanglement. The latter is well known to consume the memory exponentially in the number of qubits. This paper sketches out the idea on how to reduce significantly the amount of necessary memory while distorting the entanglement moderately or not at all. At present, considered are real nonnegative probability amplitudes.\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0012.2003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0012.2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementing quantum-inspired algorithms on classical computers suffers trade-off between the necessity of saving operational memory and the amount of memory necessary to fully represent a quantum state with possible entanglement. The latter is well known to consume the memory exponentially in the number of qubits. This paper sketches out the idea on how to reduce significantly the amount of necessary memory while distorting the entanglement moderately or not at all. At present, considered are real nonnegative probability amplitudes.