面向大数据分析的分布式多核/多核处理器虚拟机可扩展性评估

A. Nazir, Y. M. Yassin, C. P. Kit, E. Karuppiah
{"title":"面向大数据分析的分布式多核/多核处理器虚拟机可扩展性评估","authors":"A. Nazir, Y. M. Yassin, C. P. Kit, E. Karuppiah","doi":"10.1109/ICOS.2012.6417617","DOIUrl":null,"url":null,"abstract":"Cloud computing makes data analytics an attractive preposition for small and medium organisations that need to process large datasets and perform fast queries. The remarkable aspect of cloud system is that a nonexpert user can provision resources as virtual machines (VMs) of any size on the cloud within minutes to meet his/her data-processing needs. In this paper, we demonstrate the applicability of running large-scale distributed data analysis in virtualised environment. In achieving this, a series of experiments are conducted to measure and analyze performance of the virtual machine scalability on multi/many-core processors using realistic financial workloads. Our experimental results demonstrate it is crucial to minimise the number of VMs deployed for each application due to high overhead of running parallel tasks on VMs on multicore machines. We also found out that our applications perform significantly better when equipped with sufficient memory and reasonable number of cores.","PeriodicalId":319770,"journal":{"name":"2012 IEEE Conference on Open Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of virtual machine scalability on distributed multi/many-core processors for big data analytics\",\"authors\":\"A. Nazir, Y. M. Yassin, C. P. Kit, E. Karuppiah\",\"doi\":\"10.1109/ICOS.2012.6417617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing makes data analytics an attractive preposition for small and medium organisations that need to process large datasets and perform fast queries. The remarkable aspect of cloud system is that a nonexpert user can provision resources as virtual machines (VMs) of any size on the cloud within minutes to meet his/her data-processing needs. In this paper, we demonstrate the applicability of running large-scale distributed data analysis in virtualised environment. In achieving this, a series of experiments are conducted to measure and analyze performance of the virtual machine scalability on multi/many-core processors using realistic financial workloads. Our experimental results demonstrate it is crucial to minimise the number of VMs deployed for each application due to high overhead of running parallel tasks on VMs on multicore machines. We also found out that our applications perform significantly better when equipped with sufficient memory and reasonable number of cores.\",\"PeriodicalId\":319770,\"journal\":{\"name\":\"2012 IEEE Conference on Open Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Open Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOS.2012.6417617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Open Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOS.2012.6417617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云计算使数据分析成为需要处理大型数据集和执行快速查询的中小型组织的一个有吸引力的介词。云系统的显著特点是,非专业用户可以在几分钟内将资源配置为云上任何大小的虚拟机(vm),以满足他/她的数据处理需求。本文论证了在虚拟环境下运行大规模分布式数据分析的适用性。为了实现这一目标,我们进行了一系列实验,使用实际的财务工作负载来测量和分析多核/多核处理器上虚拟机可伸缩性的性能。我们的实验结果表明,由于在多核机器上的vm上运行并行任务的高开销,为每个应用程序部署的vm数量最小化是至关重要的。我们还发现,如果配备了足够的内存和合理数量的内核,应用程序的性能会显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of virtual machine scalability on distributed multi/many-core processors for big data analytics
Cloud computing makes data analytics an attractive preposition for small and medium organisations that need to process large datasets and perform fast queries. The remarkable aspect of cloud system is that a nonexpert user can provision resources as virtual machines (VMs) of any size on the cloud within minutes to meet his/her data-processing needs. In this paper, we demonstrate the applicability of running large-scale distributed data analysis in virtualised environment. In achieving this, a series of experiments are conducted to measure and analyze performance of the virtual machine scalability on multi/many-core processors using realistic financial workloads. Our experimental results demonstrate it is crucial to minimise the number of VMs deployed for each application due to high overhead of running parallel tasks on VMs on multicore machines. We also found out that our applications perform significantly better when equipped with sufficient memory and reasonable number of cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An encrypted trust-based routing protocol Variability of optical properties for atmospheric aerosol in Kuching city using AERONET Sunphotometer Long term latitudinal variation of minimum Outgoing Longwave Radiation over South East Asia Congestion and latency in symmetric interconnection topology All-pass digital system design using second-order cone programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1