手写识别系统的隐马尔可夫模型长度优化

Matthias Zimmermann, H. Bunke
{"title":"手写识别系统的隐马尔可夫模型长度优化","authors":"Matthias Zimmermann, H. Bunke","doi":"10.1109/IWFHR.2002.1030938","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of three different schemes to optimize the number of states of linear left-to-right hidden Markov models (HMM). In the first method, we describe the fixed length modeling scheme where each character model is assigned the same number of states. The second method considered is the Bakis length modeling where the number of model states is set to a given fraction of the average number of observations of the corresponding character. In the third modeling scheme the number of model states is set to a specified quantile of the corresponding character length histogram. This method is called quantile length modeling. A comparison of different length modeling schemes was carried out with a handwriting recognition system using off-line images of cursively handwritten English words from the IAM database. For the fixed length modeling, a recognition rate of 61% was achieved. Using the Bakis or quantile length modeling the word recognition rates could be improved to over 69%.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Hidden Markov model length optimization for handwriting recognition systems\",\"authors\":\"Matthias Zimmermann, H. Bunke\",\"doi\":\"10.1109/IWFHR.2002.1030938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of three different schemes to optimize the number of states of linear left-to-right hidden Markov models (HMM). In the first method, we describe the fixed length modeling scheme where each character model is assigned the same number of states. The second method considered is the Bakis length modeling where the number of model states is set to a given fraction of the average number of observations of the corresponding character. In the third modeling scheme the number of model states is set to a specified quantile of the corresponding character length histogram. This method is called quantile length modeling. A comparison of different length modeling schemes was carried out with a handwriting recognition system using off-line images of cursively handwritten English words from the IAM database. For the fixed length modeling, a recognition rate of 61% was achieved. Using the Bakis or quantile length modeling the word recognition rates could be improved to over 69%.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"388 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

本文研究了使用三种不同的方案来优化线性从左到右隐马尔可夫模型(HMM)的状态数。在第一种方法中,我们描述了固定长度的建模方案,其中每个字符模型被分配相同数量的状态。第二种考虑的方法是Bakis长度建模,其中将模型状态的数量设置为相应字符的平均观测数的给定分数。在第三种建模方案中,将模型状态的数量设置为相应字符长度直方图的指定分位数。这种方法称为分位数长度建模。利用IAM数据库中草书手写英语单词的离线图像,对不同长度建模方案进行了比较。对于固定长度建模,识别率达到61%。使用Bakis或分位数长度建模,单词识别率可以提高到69%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hidden Markov model length optimization for handwriting recognition systems
This paper investigates the use of three different schemes to optimize the number of states of linear left-to-right hidden Markov models (HMM). In the first method, we describe the fixed length modeling scheme where each character model is assigned the same number of states. The second method considered is the Bakis length modeling where the number of model states is set to a given fraction of the average number of observations of the corresponding character. In the third modeling scheme the number of model states is set to a specified quantile of the corresponding character length histogram. This method is called quantile length modeling. A comparison of different length modeling schemes was carried out with a handwriting recognition system using off-line images of cursively handwritten English words from the IAM database. For the fixed length modeling, a recognition rate of 61% was achieved. Using the Bakis or quantile length modeling the word recognition rates could be improved to over 69%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1