零缺陷微细电火花铣削的整体方法

J. Qian, Jun Wang, E. Ferraris, D. Reynaerts
{"title":"零缺陷微细电火花铣削的整体方法","authors":"J. Qian, Jun Wang, E. Ferraris, D. Reynaerts","doi":"10.1109/ISAM.2013.6643533","DOIUrl":null,"url":null,"abstract":"Micro-EDM (μEDM) milling is a well-established micro-manufacturing technique, which offers three-dimensional and flexible machining capabilities for structuring electrically conductive difficult-to-machine materials. There has been considerable progress in micro-manufacturing capabilities by μEDM in recent years. Nevertheless there still exist a few challenges in terms of process accuracy and efficiency, and the achievable shape accuracy in micro-EDM milling is limited to 3-4 microns in vertical direction and 2-3 microns in plane. In order to reach zero-defect manufacturing with this micro-sparking technique, a holistic approach for precision micro-EDM milling is pursued at Leuven University. To improve the overall performance of the micro-EDM milling process, various upgrading has been carried out on a SARIX® machine, which includes monitoring and controlling of the stability of the sparking process (gap variation and energy distribution etc.), wear compensation of the tool-electrode, and on-machine metrology. Preliminary experiments have been carried out with promising results, and further system integration and application on industrial demonstrators are in progress.","PeriodicalId":323666,"journal":{"name":"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A holistic approach for zero-defect micro-EDM milling\",\"authors\":\"J. Qian, Jun Wang, E. Ferraris, D. Reynaerts\",\"doi\":\"10.1109/ISAM.2013.6643533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-EDM (μEDM) milling is a well-established micro-manufacturing technique, which offers three-dimensional and flexible machining capabilities for structuring electrically conductive difficult-to-machine materials. There has been considerable progress in micro-manufacturing capabilities by μEDM in recent years. Nevertheless there still exist a few challenges in terms of process accuracy and efficiency, and the achievable shape accuracy in micro-EDM milling is limited to 3-4 microns in vertical direction and 2-3 microns in plane. In order to reach zero-defect manufacturing with this micro-sparking technique, a holistic approach for precision micro-EDM milling is pursued at Leuven University. To improve the overall performance of the micro-EDM milling process, various upgrading has been carried out on a SARIX® machine, which includes monitoring and controlling of the stability of the sparking process (gap variation and energy distribution etc.), wear compensation of the tool-electrode, and on-machine metrology. Preliminary experiments have been carried out with promising results, and further system integration and application on industrial demonstrators are in progress.\",\"PeriodicalId\":323666,\"journal\":{\"name\":\"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAM.2013.6643533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2013.6643533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

微电火花加工(μEDM)铣削是一种成熟的微制造技术,它为导电难加工材料的结构提供了三维和灵活的加工能力。近年来,μEDM在微制造能力方面取得了长足的进步。然而,在加工精度和效率方面仍然存在一些挑战,微细电火花铣削可实现的形状精度限制在垂直方向上3-4微米,平面上2-3微米。为了用这种微火花技术实现零缺陷制造,鲁汶大学正在研究一种精密微电火花铣削的整体方法。为了提高微细电火花铣削工艺的整体性能,在SARIX®机床上进行了各种升级,包括对火花过程稳定性的监测和控制(间隙变化和能量分布等),工具电极的磨损补偿以及机上计量。初步的实验已经取得了良好的结果,进一步的系统集成和工业示范应用正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A holistic approach for zero-defect micro-EDM milling
Micro-EDM (μEDM) milling is a well-established micro-manufacturing technique, which offers three-dimensional and flexible machining capabilities for structuring electrically conductive difficult-to-machine materials. There has been considerable progress in micro-manufacturing capabilities by μEDM in recent years. Nevertheless there still exist a few challenges in terms of process accuracy and efficiency, and the achievable shape accuracy in micro-EDM milling is limited to 3-4 microns in vertical direction and 2-3 microns in plane. In order to reach zero-defect manufacturing with this micro-sparking technique, a holistic approach for precision micro-EDM milling is pursued at Leuven University. To improve the overall performance of the micro-EDM milling process, various upgrading has been carried out on a SARIX® machine, which includes monitoring and controlling of the stability of the sparking process (gap variation and energy distribution etc.), wear compensation of the tool-electrode, and on-machine metrology. Preliminary experiments have been carried out with promising results, and further system integration and application on industrial demonstrators are in progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of highly-efficient machining method of double-layered micro channels for small mixer using end-milling and metal mold A fluid viscosity sensor with resonant trapezoidal micro cantilever Structured light camera base 3D visual perception and tracking application system with robot grasping task Performance calculation model for fix-pad journal bearing based on unified coordinate A unified geometric modeling method of process surface for precision machining of thin-walled parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1