Ferdous Shaun, E. Nefzaoui, Hugo Regina, W. Cesar, F. Marty, Martine Capochichi-Gnambodoe, P. Poulichet, P. Basset, Francesco Peressuti, Sreyash Sarkar, T. Bourouina
{"title":"热阻流量传感器在水网监测多参数传感芯片中的协整研究","authors":"Ferdous Shaun, E. Nefzaoui, Hugo Regina, W. Cesar, F. Marty, Martine Capochichi-Gnambodoe, P. Poulichet, P. Basset, Francesco Peressuti, Sreyash Sarkar, T. Bourouina","doi":"10.1109/TRANSDUCERS.2017.7994237","DOIUrl":null,"url":null,"abstract":"Motivated by the need for a multi-parameter sensing chip for water networks monitoring, we address here the specific case of a flow-rate sensor where the main challenge is the substrate material. Instead of using conventional low thermal conductivity materials such as glass, silicon has to be used. Indeed, a silicon substrate enables the co-integration of various kinds of sensors on the same chip as reported in this contribution. However, it increases the flow-rate sensor power consumption due to larger thermal leaks. We therefore design and study an optimized low power micro-machined thermal flow-rate sensor based on a silicon substrate and operating according to hot-wire anemometry. It can be considered as an alternative to other well established sensors for liquid flow-rate measurement when both the use of a silicon substrate and a low power consumption are needed.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the co-integration of a thermo-resistive flow-rate sensor in a multi-parameter sensing chip for water network monitoring\",\"authors\":\"Ferdous Shaun, E. Nefzaoui, Hugo Regina, W. Cesar, F. Marty, Martine Capochichi-Gnambodoe, P. Poulichet, P. Basset, Francesco Peressuti, Sreyash Sarkar, T. Bourouina\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the need for a multi-parameter sensing chip for water networks monitoring, we address here the specific case of a flow-rate sensor where the main challenge is the substrate material. Instead of using conventional low thermal conductivity materials such as glass, silicon has to be used. Indeed, a silicon substrate enables the co-integration of various kinds of sensors on the same chip as reported in this contribution. However, it increases the flow-rate sensor power consumption due to larger thermal leaks. We therefore design and study an optimized low power micro-machined thermal flow-rate sensor based on a silicon substrate and operating according to hot-wire anemometry. It can be considered as an alternative to other well established sensors for liquid flow-rate measurement when both the use of a silicon substrate and a low power consumption are needed.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the co-integration of a thermo-resistive flow-rate sensor in a multi-parameter sensing chip for water network monitoring
Motivated by the need for a multi-parameter sensing chip for water networks monitoring, we address here the specific case of a flow-rate sensor where the main challenge is the substrate material. Instead of using conventional low thermal conductivity materials such as glass, silicon has to be used. Indeed, a silicon substrate enables the co-integration of various kinds of sensors on the same chip as reported in this contribution. However, it increases the flow-rate sensor power consumption due to larger thermal leaks. We therefore design and study an optimized low power micro-machined thermal flow-rate sensor based on a silicon substrate and operating according to hot-wire anemometry. It can be considered as an alternative to other well established sensors for liquid flow-rate measurement when both the use of a silicon substrate and a low power consumption are needed.