加速混合系统微分动态规划

John N. Nganga, Patrick M. Wensing
{"title":"加速混合系统微分动态规划","authors":"John N. Nganga, Patrick M. Wensing","doi":"10.1115/1.4056747","DOIUrl":null,"url":null,"abstract":"\n This letter presents approaches that reduce the computational demand of including second-order dynamics sensitivity information into optimization algorithms for robots in contact with the environment. A full second-order Differential Dynamic Programming (DDP) algorithm is presented where all the necessary dynamics partial derivatives are computed with the same complexity as DDP's first-order counterpart, the iterative Linear Quadratic Regulator (iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order partials of the dynamics are tensorial and expensive to compute. This work illustrates how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivatives, extending previous work for unconstrained systems. We exploit the structure of the contact-constrained dynamics in this process. The performance of the proposed approaches is benchmarked with a simulated model of the MIT Mini Cheetah executing a bounding gait.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerating Hybrid Systems Differential Dynamic Programming\",\"authors\":\"John N. Nganga, Patrick M. Wensing\",\"doi\":\"10.1115/1.4056747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This letter presents approaches that reduce the computational demand of including second-order dynamics sensitivity information into optimization algorithms for robots in contact with the environment. A full second-order Differential Dynamic Programming (DDP) algorithm is presented where all the necessary dynamics partial derivatives are computed with the same complexity as DDP's first-order counterpart, the iterative Linear Quadratic Regulator (iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order partials of the dynamics are tensorial and expensive to compute. This work illustrates how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivatives, extending previous work for unconstrained systems. We exploit the structure of the contact-constrained dynamics in this process. The performance of the proposed approaches is benchmarked with a simulated model of the MIT Mini Cheetah executing a bounding gait.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了减少将二阶动力学灵敏度信息纳入与环境接触的机器人优化算法的计算需求的方法。提出了一种完整的二阶微分动态规划(DDP)算法,该算法以与DDP的一阶对应的迭代线性二次调节器(iLQR)相同的复杂度计算所有必要的动态偏导数。与iLQR中使用的线性化模型相比,DDP更准确地表示局部动力学,但由于动力学的二阶偏导数是张量的并且计算成本高,因此不常使用。这项工作说明了如何通过利用导数的逆模积累来避免计算导数张量的需要,扩展了以前对无约束系统的工作。在此过程中,我们利用了接触约束动力学的结构。以麻省理工学院迷你猎豹跳跃步态的仿真模型对所提出方法的性能进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Hybrid Systems Differential Dynamic Programming
This letter presents approaches that reduce the computational demand of including second-order dynamics sensitivity information into optimization algorithms for robots in contact with the environment. A full second-order Differential Dynamic Programming (DDP) algorithm is presented where all the necessary dynamics partial derivatives are computed with the same complexity as DDP's first-order counterpart, the iterative Linear Quadratic Regulator (iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order partials of the dynamics are tensorial and expensive to compute. This work illustrates how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivatives, extending previous work for unconstrained systems. We exploit the structure of the contact-constrained dynamics in this process. The performance of the proposed approaches is benchmarked with a simulated model of the MIT Mini Cheetah executing a bounding gait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1