Diego V. Queiroz, R. Gomes, C. Benavente-Peces, I. Fonseca, M. Alencar
{"title":"加入多信道和IEEE 802.15.4e TSCH协议使用对WSN性能和能效的影响","authors":"Diego V. Queiroz, R. Gomes, C. Benavente-Peces, I. Fonseca, M. Alencar","doi":"10.5220/0008162300830090","DOIUrl":null,"url":null,"abstract":"The goal of this paper is analysing the use of the IEEE 802.15.4e standard MAC layer protocol Time-Slotted Channel Hopping (TSCH) mode in the context of Internet of Things (IoT) and Industrial IoT (IIoT) aimed at reducing narrow-band interferences and the multi-path fading impact on available channels by using frequency hopping, with network time synchronization to achieve low-power operation. In low disturbances environments using several channels provides the diversity benefits. However, using several channels requires channel scanning and switching leads to extra power consumption. It could be accepted in harsh environments (industrial), due to its influence on channels features, requiring more channels, and it is necessary to continuously hop seeking for the best one to achieve the best performance. Several experiments have been simulated and implemented in real testbeds the laboratory as first validation approach. The performance and energy efficiency of the entire network is analysed for different scheduling methods, packet transmission rates, number of used channels and guard time. The relevant conclusion showed in this investigation is that using all the available channels of the standard is not required to achieve the best joint-results given that, regardless the scheduling method used, considering a higher number channels requires a higher power consumption for channels quality exploration and packet reception rate decreases.","PeriodicalId":298357,"journal":{"name":"International Conference on Pervasive and Embedded Computing and Communication Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Join Multiple Channels and IEEE 802.15.4e TSCH Protocol Use Effects on WSN Performance and Energy Efficiency\",\"authors\":\"Diego V. Queiroz, R. Gomes, C. Benavente-Peces, I. Fonseca, M. Alencar\",\"doi\":\"10.5220/0008162300830090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is analysing the use of the IEEE 802.15.4e standard MAC layer protocol Time-Slotted Channel Hopping (TSCH) mode in the context of Internet of Things (IoT) and Industrial IoT (IIoT) aimed at reducing narrow-band interferences and the multi-path fading impact on available channels by using frequency hopping, with network time synchronization to achieve low-power operation. In low disturbances environments using several channels provides the diversity benefits. However, using several channels requires channel scanning and switching leads to extra power consumption. It could be accepted in harsh environments (industrial), due to its influence on channels features, requiring more channels, and it is necessary to continuously hop seeking for the best one to achieve the best performance. Several experiments have been simulated and implemented in real testbeds the laboratory as first validation approach. The performance and energy efficiency of the entire network is analysed for different scheduling methods, packet transmission rates, number of used channels and guard time. The relevant conclusion showed in this investigation is that using all the available channels of the standard is not required to achieve the best joint-results given that, regardless the scheduling method used, considering a higher number channels requires a higher power consumption for channels quality exploration and packet reception rate decreases.\",\"PeriodicalId\":298357,\"journal\":{\"name\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0008162300830090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pervasive and Embedded Computing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008162300830090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Join Multiple Channels and IEEE 802.15.4e TSCH Protocol Use Effects on WSN Performance and Energy Efficiency
The goal of this paper is analysing the use of the IEEE 802.15.4e standard MAC layer protocol Time-Slotted Channel Hopping (TSCH) mode in the context of Internet of Things (IoT) and Industrial IoT (IIoT) aimed at reducing narrow-band interferences and the multi-path fading impact on available channels by using frequency hopping, with network time synchronization to achieve low-power operation. In low disturbances environments using several channels provides the diversity benefits. However, using several channels requires channel scanning and switching leads to extra power consumption. It could be accepted in harsh environments (industrial), due to its influence on channels features, requiring more channels, and it is necessary to continuously hop seeking for the best one to achieve the best performance. Several experiments have been simulated and implemented in real testbeds the laboratory as first validation approach. The performance and energy efficiency of the entire network is analysed for different scheduling methods, packet transmission rates, number of used channels and guard time. The relevant conclusion showed in this investigation is that using all the available channels of the standard is not required to achieve the best joint-results given that, regardless the scheduling method used, considering a higher number channels requires a higher power consumption for channels quality exploration and packet reception rate decreases.