基于各向异性扩散滤波和GLRLM特征提取的胸部x线图像Covid-19检测数学模型

S. Sanjayprabu, R. Sathish Kumar, K. Somasundaram, R. Karthikamani
{"title":"基于各向异性扩散滤波和GLRLM特征提取的胸部x线图像Covid-19检测数学模型","authors":"S. Sanjayprabu, R. Sathish Kumar, K. Somasundaram, R. Karthikamani","doi":"10.1109/STCR55312.2022.10009430","DOIUrl":null,"url":null,"abstract":"In December 2019, the SARS-CoV-2 virus, often referred to as COVID-19, was discovered in Wuhan, China. It is very virulent and has spread very quickly throughout the world. With COVID-19, people have described a wide variety of symptoms, from little discomfort to life-threatening respiratory illness. In this study, chest X-ray scan images are preprocessed using an anisotropic diffusion filter and three classifiers, and the Covid-19 cases are classified from the chest X-ray images using the GLRLM feature extraction approach. Common metrics like sensitivity, selectivity, and accuracy are utilized to compare the performance of the classifiers. When compared to other classifiers in this study, the Gaussian Mixture Model had the best accuracy of 91.07%.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical Model for Anisotropic diffusion Filter and GLRLM Feature Extraction to Detect Covid-19 from Chest X-Ray Images\",\"authors\":\"S. Sanjayprabu, R. Sathish Kumar, K. Somasundaram, R. Karthikamani\",\"doi\":\"10.1109/STCR55312.2022.10009430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In December 2019, the SARS-CoV-2 virus, often referred to as COVID-19, was discovered in Wuhan, China. It is very virulent and has spread very quickly throughout the world. With COVID-19, people have described a wide variety of symptoms, from little discomfort to life-threatening respiratory illness. In this study, chest X-ray scan images are preprocessed using an anisotropic diffusion filter and three classifiers, and the Covid-19 cases are classified from the chest X-ray images using the GLRLM feature extraction approach. Common metrics like sensitivity, selectivity, and accuracy are utilized to compare the performance of the classifiers. When compared to other classifiers in this study, the Gaussian Mixture Model had the best accuracy of 91.07%.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

2019年12月,在中国武汉发现了SARS-CoV-2病毒,通常被称为COVID-19。它的毒性很强,在世界范围内迅速传播。对于COVID-19,人们描述了各种各样的症状,从轻微的不适到危及生命的呼吸系统疾病。本研究采用各向异性扩散滤波和三种分类器对胸部x线扫描图像进行预处理,并采用GLRLM特征提取方法对胸部x线图像中的Covid-19病例进行分类。灵敏度、选择性和准确性等常用指标用于比较分类器的性能。与本研究的其他分类器相比,高斯混合模型的准确率最高,为91.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Model for Anisotropic diffusion Filter and GLRLM Feature Extraction to Detect Covid-19 from Chest X-Ray Images
In December 2019, the SARS-CoV-2 virus, often referred to as COVID-19, was discovered in Wuhan, China. It is very virulent and has spread very quickly throughout the world. With COVID-19, people have described a wide variety of symptoms, from little discomfort to life-threatening respiratory illness. In this study, chest X-ray scan images are preprocessed using an anisotropic diffusion filter and three classifiers, and the Covid-19 cases are classified from the chest X-ray images using the GLRLM feature extraction approach. Common metrics like sensitivity, selectivity, and accuracy are utilized to compare the performance of the classifiers. When compared to other classifiers in this study, the Gaussian Mixture Model had the best accuracy of 91.07%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GM-LAMP with Residual Learning Network for Millimetre Wave MIMO Architectures Analysis of Artificial Intelligence based Forecasting Techniques for Renewable Wind Power Generation Millimeter Wave Channel in Urban Micro / Urban Macro Environments: Path Loss Model and its Effect on Channel Capacity Estimating GeoJSON Coordinates using Image Processing to Improve Census Credibility Implementation Techniques for GIFT Block Cypher: A Real-Time Performance Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1