{"title":"基于 L 和 R 成员函数斜率几何平均值的三角模糊数新聚合运算符","authors":"Manju Pandey, N. Khare","doi":"10.24297/IJCT.V2I2A.6783","DOIUrl":null,"url":null,"abstract":"In recent work authors have proposed four new aggregation operators for triangular and trapezoidal fuzzy numbers based on means of apex angles [1][2][3][4]. Subsequently authors have proposed [5] a new aggregation operator for TFNs based on the arithmetic mean of slopes of the L- and R- membership lines. In this paper the work is extended and a new aggregation operator for TFNs is proposed in which the L- and R- membership function lines of the aggregate TFN have slopes which are the geometric means of the corresponding L- and R- slopes of the individual TFNs. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TFN aggregates have also been computed.","PeriodicalId":161820,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New Aggregation Operator for Triangular Fuzzy Numbers based on the Geometric Means of the Slopes of the L- and R- Membership Functions\",\"authors\":\"Manju Pandey, N. Khare\",\"doi\":\"10.24297/IJCT.V2I2A.6783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent work authors have proposed four new aggregation operators for triangular and trapezoidal fuzzy numbers based on means of apex angles [1][2][3][4]. Subsequently authors have proposed [5] a new aggregation operator for TFNs based on the arithmetic mean of slopes of the L- and R- membership lines. In this paper the work is extended and a new aggregation operator for TFNs is proposed in which the L- and R- membership function lines of the aggregate TFN have slopes which are the geometric means of the corresponding L- and R- slopes of the individual TFNs. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TFN aggregates have also been computed.\",\"PeriodicalId\":161820,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/IJCT.V2I2A.6783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/IJCT.V2I2A.6783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Aggregation Operator for Triangular Fuzzy Numbers based on the Geometric Means of the Slopes of the L- and R- Membership Functions
In recent work authors have proposed four new aggregation operators for triangular and trapezoidal fuzzy numbers based on means of apex angles [1][2][3][4]. Subsequently authors have proposed [5] a new aggregation operator for TFNs based on the arithmetic mean of slopes of the L- and R- membership lines. In this paper the work is extended and a new aggregation operator for TFNs is proposed in which the L- and R- membership function lines of the aggregate TFN have slopes which are the geometric means of the corresponding L- and R- slopes of the individual TFNs. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TFN aggregates have also been computed.