假新闻、讽刺新闻、客观新闻和合法新闻的判别:一个多标签分类系统

Janaína Ignácio de Morais, Hugo Queiroz Abonizio, G. Tavares, André Azevedo da Fonseca, Sylvio Barbon Junior
{"title":"假新闻、讽刺新闻、客观新闻和合法新闻的判别:一个多标签分类系统","authors":"Janaína Ignácio de Morais, Hugo Queiroz Abonizio, G. Tavares, André Azevedo da Fonseca, Sylvio Barbon Junior","doi":"10.1145/3330204.3330231","DOIUrl":null,"url":null,"abstract":"Currently, the widespread of fake news has raised on the political class and society members in general, increasing concerns about the potential of misinformation that can be propagated, appearing on the center of the debate about election results around the world. On the other hand, satirical news has an entertaining purpose and are mistakenly put on the same boat of objective fake news. In this work, we address the differences between objectivity and legitimacy of news documents, treating each article as having two conceptual classes: objective/satirical and legitimate/fake. Thus, we propose a Decision Support System (DSS) based on a text mining pipeline and a set of novel textual features that uses multi-label methods for classifying news articles on those two domains. For validating the approach, a set of multi-label methods was evaluated with a combination of different base classifiers and then compared to a multi-class approach. Results reported our DSS as proper (0.80 F1-score) in addressing the scenario of misleading news from challenging perspective of multi-label modeling, outperforming the multi-class methods (0.71 F1-score) over a real-life news dataset collected from several portals of news.","PeriodicalId":348938,"journal":{"name":"Proceedings of the XV Brazilian Symposium on Information Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deciding among Fake, Satirical, Objective and Legitimate news: A multi-label classification system\",\"authors\":\"Janaína Ignácio de Morais, Hugo Queiroz Abonizio, G. Tavares, André Azevedo da Fonseca, Sylvio Barbon Junior\",\"doi\":\"10.1145/3330204.3330231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the widespread of fake news has raised on the political class and society members in general, increasing concerns about the potential of misinformation that can be propagated, appearing on the center of the debate about election results around the world. On the other hand, satirical news has an entertaining purpose and are mistakenly put on the same boat of objective fake news. In this work, we address the differences between objectivity and legitimacy of news documents, treating each article as having two conceptual classes: objective/satirical and legitimate/fake. Thus, we propose a Decision Support System (DSS) based on a text mining pipeline and a set of novel textual features that uses multi-label methods for classifying news articles on those two domains. For validating the approach, a set of multi-label methods was evaluated with a combination of different base classifiers and then compared to a multi-class approach. Results reported our DSS as proper (0.80 F1-score) in addressing the scenario of misleading news from challenging perspective of multi-label modeling, outperforming the multi-class methods (0.71 F1-score) over a real-life news dataset collected from several portals of news.\",\"PeriodicalId\":348938,\"journal\":{\"name\":\"Proceedings of the XV Brazilian Symposium on Information Systems\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the XV Brazilian Symposium on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330204.3330231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330204.3330231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

目前,假新闻的广泛传播引起了政治阶层和社会成员的普遍关注,人们越来越担心可能传播的错误信息,出现在世界各地关于选举结果的辩论的中心。另一方面,讽刺新闻具有娱乐目的,被错误地与客观假新闻相提并论。在这项工作中,我们解决了新闻文件的客观性和合法性之间的差异,将每篇文章视为两个概念类别:客观/讽刺和合法/假。因此,我们提出了一个基于文本挖掘管道和一组新颖文本特征的决策支持系统(DSS),该系统使用多标签方法对这两个领域的新闻文章进行分类。为了验证该方法,使用不同基本分类器的组合对一组多标签方法进行了评估,然后与多类方法进行了比较。结果表明,从具有挑战性的多标签建模角度来看,我们的DSS在解决误导性新闻场景方面是正确的(0.80 f1得分),在从多个新闻门户收集的真实新闻数据集上优于多类方法(0.71 f1得分)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciding among Fake, Satirical, Objective and Legitimate news: A multi-label classification system
Currently, the widespread of fake news has raised on the political class and society members in general, increasing concerns about the potential of misinformation that can be propagated, appearing on the center of the debate about election results around the world. On the other hand, satirical news has an entertaining purpose and are mistakenly put on the same boat of objective fake news. In this work, we address the differences between objectivity and legitimacy of news documents, treating each article as having two conceptual classes: objective/satirical and legitimate/fake. Thus, we propose a Decision Support System (DSS) based on a text mining pipeline and a set of novel textual features that uses multi-label methods for classifying news articles on those two domains. For validating the approach, a set of multi-label methods was evaluated with a combination of different base classifiers and then compared to a multi-class approach. Results reported our DSS as proper (0.80 F1-score) in addressing the scenario of misleading news from challenging perspective of multi-label modeling, outperforming the multi-class methods (0.71 F1-score) over a real-life news dataset collected from several portals of news.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Outer-Tuning: an integration of rules, ontology and RDBMS Market Prediction in Criptocurrency: A Systematic Literature Mapping Machine learning techniques for code smells detection: an empirical experiment on a highly imbalanced setup Kairós LifeReview: A model for monitoring people with anxiety disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1