同一迁移模型下强化学习的迁移方法——快速逼近与优先探索

Toshiaki Takano, H. Takase, H. Kawanaka, S. Tsuruoka
{"title":"同一迁移模型下强化学习的迁移方法——快速逼近与优先探索","authors":"Toshiaki Takano, H. Takase, H. Kawanaka, S. Tsuruoka","doi":"10.1109/ICMLA.2011.148","DOIUrl":null,"url":null,"abstract":"We aim to accelerate learning processes in reinforcement learning by transfer learning. Its concept is that knowledge to solve similar tasks accelerates a learning process of a target task. We have proposed that the basic transfer method based on forbidden rule set that is a set of rules which cause to immediately failure of a target task. However, the basic method works poorly for the gSame Transition Model,h which has same state transition probability and different goal. In this article, we propose an effective transfer learning method in same transition model. In detail, it consists of two strategies: (1) approaching to the goal for the selected source task quickly, and (2) exploring states around the goal preferentially.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Transfer Method for Reinforcement Learning in Same Transition Model -- Quick Approach and Preferential Exploration\",\"authors\":\"Toshiaki Takano, H. Takase, H. Kawanaka, S. Tsuruoka\",\"doi\":\"10.1109/ICMLA.2011.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to accelerate learning processes in reinforcement learning by transfer learning. Its concept is that knowledge to solve similar tasks accelerates a learning process of a target task. We have proposed that the basic transfer method based on forbidden rule set that is a set of rules which cause to immediately failure of a target task. However, the basic method works poorly for the gSame Transition Model,h which has same state transition probability and different goal. In this article, we propose an effective transfer learning method in same transition model. In detail, it consists of two strategies: (1) approaching to the goal for the selected source task quickly, and (2) exploring states around the goal preferentially.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们的目标是通过迁移学习来加速强化学习中的学习过程。它的概念是解决类似任务的知识加速了目标任务的学习过程。我们提出了基于禁止规则集的基本转移方法,禁止规则集是一组导致目标任务立即失败的规则。然而,对于具有相同状态转移概率和不同目标的“相同转移模型”,基本方法的效果较差。在本文中,我们提出了一种有效的迁移学习方法。具体来说,它包括两种策略:(1)快速接近选定源任务的目标;(2)优先探索目标周围的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Method for Reinforcement Learning in Same Transition Model -- Quick Approach and Preferential Exploration
We aim to accelerate learning processes in reinforcement learning by transfer learning. Its concept is that knowledge to solve similar tasks accelerates a learning process of a target task. We have proposed that the basic transfer method based on forbidden rule set that is a set of rules which cause to immediately failure of a target task. However, the basic method works poorly for the gSame Transition Model,h which has same state transition probability and different goal. In this article, we propose an effective transfer learning method in same transition model. In detail, it consists of two strategies: (1) approaching to the goal for the selected source task quickly, and (2) exploring states around the goal preferentially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1