Alejandro Jarillo-Silva, O. Dominguez-Ramirez, J. A. Cruz-Tolentino, L. E. R. Velasco, Vicente Parra‐Vega
{"title":"动觉引导与图形治疗目的","authors":"Alejandro Jarillo-Silva, O. Dominguez-Ramirez, J. A. Cruz-Tolentino, L. E. R. Velasco, Vicente Parra‐Vega","doi":"10.1109/MICAI.2013.45","DOIUrl":null,"url":null,"abstract":"This paper presents the design, construction and implementation of a calligraphic platform with biomedical applications. This technological tool could be employed in physiotherapy to recover the loss of calligraphic abilities caused by common psychomotor disorders such as dyslexia and brain stroke. The experimental platform allow to define the motion performance (physical interaction variables), in particular on upper limbs. the patient is guided through the end effector of a haptic device; to this end is used a nonlinear control in closed loop with the human operator, with language symbols as a trajectory tracking. This allows that the user can be a passive human, so the control law designed is based on passivity theory and sliding mode to achieve stability and security in human machine interaction. The haptic system described, is designed to improve the physiotherapeutic tasks by supplying the motion measurement (position/velocity) and its errors. Preliminary tests using this novel system demonstrated a significative influence on regain functions in patients with psychomotor disorders.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinesthetic Guided with Graphotherapeutic Purposes\",\"authors\":\"Alejandro Jarillo-Silva, O. Dominguez-Ramirez, J. A. Cruz-Tolentino, L. E. R. Velasco, Vicente Parra‐Vega\",\"doi\":\"10.1109/MICAI.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, construction and implementation of a calligraphic platform with biomedical applications. This technological tool could be employed in physiotherapy to recover the loss of calligraphic abilities caused by common psychomotor disorders such as dyslexia and brain stroke. The experimental platform allow to define the motion performance (physical interaction variables), in particular on upper limbs. the patient is guided through the end effector of a haptic device; to this end is used a nonlinear control in closed loop with the human operator, with language symbols as a trajectory tracking. This allows that the user can be a passive human, so the control law designed is based on passivity theory and sliding mode to achieve stability and security in human machine interaction. The haptic system described, is designed to improve the physiotherapeutic tasks by supplying the motion measurement (position/velocity) and its errors. Preliminary tests using this novel system demonstrated a significative influence on regain functions in patients with psychomotor disorders.\",\"PeriodicalId\":340039,\"journal\":{\"name\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinesthetic Guided with Graphotherapeutic Purposes
This paper presents the design, construction and implementation of a calligraphic platform with biomedical applications. This technological tool could be employed in physiotherapy to recover the loss of calligraphic abilities caused by common psychomotor disorders such as dyslexia and brain stroke. The experimental platform allow to define the motion performance (physical interaction variables), in particular on upper limbs. the patient is guided through the end effector of a haptic device; to this end is used a nonlinear control in closed loop with the human operator, with language symbols as a trajectory tracking. This allows that the user can be a passive human, so the control law designed is based on passivity theory and sliding mode to achieve stability and security in human machine interaction. The haptic system described, is designed to improve the physiotherapeutic tasks by supplying the motion measurement (position/velocity) and its errors. Preliminary tests using this novel system demonstrated a significative influence on regain functions in patients with psychomotor disorders.