FrameFire:为视频分割启用高效尖峰神经网络推理

Qinyu Chen, Congyi Sun, Chang Gao, X. Fang, H. Luan
{"title":"FrameFire:为视频分割启用高效尖峰神经网络推理","authors":"Qinyu Chen, Congyi Sun, Chang Gao, X. Fang, H. Luan","doi":"10.1109/AICAS57966.2023.10168660","DOIUrl":null,"url":null,"abstract":"Fast video recognition is essential for real-time scenarios, e.g., autonomous driving. However, applying existing Deep Neural Networks (DNNs) to individual high-resolution images is expensive due to large model sizes. Spiking Neural Networks (SNNs) are developed as a promising alternative to DNNs due to their more realistic brain-inspired computing models. SNNs have sparse neuron firing over time, i.e., spatio-temporal sparsity; thus they are useful to enable energy-efficient computation. However, exploiting the spatio-temporal sparsity of SNNs in hardware leads to unpredictable and unbalanced workloads, degrading energy efficiency. In this work, we, therefore, propose an SNN accelerator called FrameFire for efficient video processing. We introduce a Keyframe-dominated Workload Balance Schedule (KWBS) method. It accelerates the image recognition network with sparse keyframes, then records and analyzes the current workload distribution on hardware to facilitate scheduling workloads in subsequent frames. FrameFire is implemented on a Xilinx XC7Z035 FPGA and verified by video segmentation tasks. The results show that the throughput is improved by 1.7× with the KWBS method. FrameFire achieved 1.04 KFPS throughput and 1.15 mJ/frame recognition energy.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FrameFire: Enabling Efficient Spiking Neural Network Inference for Video Segmentation\",\"authors\":\"Qinyu Chen, Congyi Sun, Chang Gao, X. Fang, H. Luan\",\"doi\":\"10.1109/AICAS57966.2023.10168660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast video recognition is essential for real-time scenarios, e.g., autonomous driving. However, applying existing Deep Neural Networks (DNNs) to individual high-resolution images is expensive due to large model sizes. Spiking Neural Networks (SNNs) are developed as a promising alternative to DNNs due to their more realistic brain-inspired computing models. SNNs have sparse neuron firing over time, i.e., spatio-temporal sparsity; thus they are useful to enable energy-efficient computation. However, exploiting the spatio-temporal sparsity of SNNs in hardware leads to unpredictable and unbalanced workloads, degrading energy efficiency. In this work, we, therefore, propose an SNN accelerator called FrameFire for efficient video processing. We introduce a Keyframe-dominated Workload Balance Schedule (KWBS) method. It accelerates the image recognition network with sparse keyframes, then records and analyzes the current workload distribution on hardware to facilitate scheduling workloads in subsequent frames. FrameFire is implemented on a Xilinx XC7Z035 FPGA and verified by video segmentation tasks. The results show that the throughput is improved by 1.7× with the KWBS method. FrameFire achieved 1.04 KFPS throughput and 1.15 mJ/frame recognition energy.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速视频识别对于实时场景至关重要,例如自动驾驶。然而,由于模型尺寸大,将现有的深度神经网络(dnn)应用于单个高分辨率图像是昂贵的。脉冲神经网络(snn)由于其更现实的大脑启发计算模型而成为dnn的一种有前途的替代品。snn随着时间的推移具有稀疏的神经元放电,即时空稀疏性;因此,它们有助于实现节能计算。然而,在硬件中利用snn的时空稀疏性会导致不可预测和不平衡的工作负载,从而降低能源效率。因此,在这项工作中,我们提出了一种称为FrameFire的SNN加速器,用于高效的视频处理。提出了一种以关键帧为主导的工作负载平衡调度方法。它利用稀疏的关键帧对图像识别网络进行加速,然后记录和分析当前硬件上的工作负载分布,以便在后续帧中调度工作负载。FrameFire在Xilinx XC7Z035 FPGA上实现,并通过视频分割任务进行验证。结果表明,采用KWBS方法可将吞吐量提高1.7倍。FrameFire的吞吐量为1.04 KFPS,识别能量为1.15 mJ/帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FrameFire: Enabling Efficient Spiking Neural Network Inference for Video Segmentation
Fast video recognition is essential for real-time scenarios, e.g., autonomous driving. However, applying existing Deep Neural Networks (DNNs) to individual high-resolution images is expensive due to large model sizes. Spiking Neural Networks (SNNs) are developed as a promising alternative to DNNs due to their more realistic brain-inspired computing models. SNNs have sparse neuron firing over time, i.e., spatio-temporal sparsity; thus they are useful to enable energy-efficient computation. However, exploiting the spatio-temporal sparsity of SNNs in hardware leads to unpredictable and unbalanced workloads, degrading energy efficiency. In this work, we, therefore, propose an SNN accelerator called FrameFire for efficient video processing. We introduce a Keyframe-dominated Workload Balance Schedule (KWBS) method. It accelerates the image recognition network with sparse keyframes, then records and analyzes the current workload distribution on hardware to facilitate scheduling workloads in subsequent frames. FrameFire is implemented on a Xilinx XC7Z035 FPGA and verified by video segmentation tasks. The results show that the throughput is improved by 1.7× with the KWBS method. FrameFire achieved 1.04 KFPS throughput and 1.15 mJ/frame recognition energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1