{"title":"机身发动机一体化空天平面绕流初步数值模拟","authors":"S. Hasegawa, T. Kanda","doi":"10.2322/TASTJ.17.301","DOIUrl":null,"url":null,"abstract":"Numerical simulation of aerodynamics around the spaceplane was conducted in the equivalent condition to the transonic wind tunnel tests at ISAS/JAXA. Numerical results reproduced experimental results, and they are useful to discuss the experimental results. Two configurations, namely, the experimental model and the original model were investigated. In all Mach numbers, drag coefficient of the experimental model was larger t han that of the original model. Especially the wing and the tail made large drag. The different cross section of the wing and the tail caused the larger drag in the experimental model.","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary Numerical Simulation of Flow around Spaceplane for Airframe Engine Integration\",\"authors\":\"S. Hasegawa, T. Kanda\",\"doi\":\"10.2322/TASTJ.17.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulation of aerodynamics around the spaceplane was conducted in the equivalent condition to the transonic wind tunnel tests at ISAS/JAXA. Numerical results reproduced experimental results, and they are useful to discuss the experimental results. Two configurations, namely, the experimental model and the original model were investigated. In all Mach numbers, drag coefficient of the experimental model was larger t han that of the original model. Especially the wing and the tail made large drag. The different cross section of the wing and the tail caused the larger drag in the experimental model.\",\"PeriodicalId\":120185,\"journal\":{\"name\":\"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/TASTJ.17.301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/TASTJ.17.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary Numerical Simulation of Flow around Spaceplane for Airframe Engine Integration
Numerical simulation of aerodynamics around the spaceplane was conducted in the equivalent condition to the transonic wind tunnel tests at ISAS/JAXA. Numerical results reproduced experimental results, and they are useful to discuss the experimental results. Two configurations, namely, the experimental model and the original model were investigated. In all Mach numbers, drag coefficient of the experimental model was larger t han that of the original model. Especially the wing and the tail made large drag. The different cross section of the wing and the tail caused the larger drag in the experimental model.