一种新的具有双自适应背景的MRF图像分割框架

P. Zhong, Fangchen Liu, Runsheng Wang
{"title":"一种新的具有双自适应背景的MRF图像分割框架","authors":"P. Zhong, Fangchen Liu, Runsheng Wang","doi":"10.1109/CIS.2007.192","DOIUrl":null,"url":null,"abstract":"This work presents a new Markov random field (MRF) framework for image segmentation by incorporating exact contexts in the label field as well as the observed data. On the one hand, the new framework presents MRF with adaptive neighborhood (MRF-AN) system to model adaptively the contextual information of the hidden label field. On the other hand, the new framework models observations via a conditional random field (CRF), which incorporates the contextual information in observed data. The new MRF framework with the dual adaptive contextual information offers several advantages over the conventional framework. In this work, we demonstrate the advantages in an application of detail preservation in image segmentation.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A New MRF Framework with Dual Adaptive Contexts for Image Segmentation\",\"authors\":\"P. Zhong, Fangchen Liu, Runsheng Wang\",\"doi\":\"10.1109/CIS.2007.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new Markov random field (MRF) framework for image segmentation by incorporating exact contexts in the label field as well as the observed data. On the one hand, the new framework presents MRF with adaptive neighborhood (MRF-AN) system to model adaptively the contextual information of the hidden label field. On the other hand, the new framework models observations via a conditional random field (CRF), which incorporates the contextual information in observed data. The new MRF framework with the dual adaptive contextual information offers several advantages over the conventional framework. In this work, we demonstrate the advantages in an application of detail preservation in image segmentation.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

这项工作提出了一种新的马尔可夫随机场(MRF)框架,通过在标签领域以及观测数据中结合精确的上下文来进行图像分割。一方面,该框架提出了带有自适应邻域(MRF- an)系统的MRF,对隐藏标签域的上下文信息进行自适应建模。另一方面,新框架通过条件随机场(CRF)对观测数据进行建模,该模型将观测数据中的上下文信息纳入其中。具有双重自适应上下文信息的新MRF框架与传统框架相比具有许多优点。在这项工作中,我们展示了在图像分割中应用细节保留的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New MRF Framework with Dual Adaptive Contexts for Image Segmentation
This work presents a new Markov random field (MRF) framework for image segmentation by incorporating exact contexts in the label field as well as the observed data. On the one hand, the new framework presents MRF with adaptive neighborhood (MRF-AN) system to model adaptively the contextual information of the hidden label field. On the other hand, the new framework models observations via a conditional random field (CRF), which incorporates the contextual information in observed data. The new MRF framework with the dual adaptive contextual information offers several advantages over the conventional framework. In this work, we demonstrate the advantages in an application of detail preservation in image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1