基于SURF特征的图像匹配算法研究

Dong Hui, H. Yuan
{"title":"基于SURF特征的图像匹配算法研究","authors":"Dong Hui, H. Yuan","doi":"10.1109/CSIP.2012.6309059","DOIUrl":null,"url":null,"abstract":"Previous images matching uses algorithm based on SIFT which has lots of calculating works and low time-efficiency. In this paper, we use SURF algorithm to detect and descript the interest points, and match the interest points by using high time-efficient KD-tree nearest neighbor searching method. The experimental result shows that it has good time efficiency and excellent robustness.","PeriodicalId":193335,"journal":{"name":"2012 International Conference on Computer Science and Information Processing (CSIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Research of image matching algorithm based on SURF features\",\"authors\":\"Dong Hui, H. Yuan\",\"doi\":\"10.1109/CSIP.2012.6309059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous images matching uses algorithm based on SIFT which has lots of calculating works and low time-efficiency. In this paper, we use SURF algorithm to detect and descript the interest points, and match the interest points by using high time-efficient KD-tree nearest neighbor searching method. The experimental result shows that it has good time efficiency and excellent robustness.\",\"PeriodicalId\":193335,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIP.2012.6309059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Information Processing (CSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIP.2012.6309059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

以往的图像匹配采用基于SIFT的算法,计算量大,时间效率低。本文采用SURF算法对兴趣点进行检测和描述,并采用高效率的kd树最近邻搜索方法对兴趣点进行匹配。实验结果表明,该方法具有良好的时间效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of image matching algorithm based on SURF features
Previous images matching uses algorithm based on SIFT which has lots of calculating works and low time-efficiency. In this paper, we use SURF algorithm to detect and descript the interest points, and match the interest points by using high time-efficient KD-tree nearest neighbor searching method. The experimental result shows that it has good time efficiency and excellent robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network information impacting on rural education Scene detection in interference rejection combining algorithm Effects of oversample in tone reservation scheme for PAPR reduction in OFDM systems Efficient clustering index for semantic Web service based on user preference Research on fusion control of cement rotary kiln based on rough set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1